ﻻ يوجد ملخص باللغة العربية
When a photon interferes with itself while traversing a Mach-Zehnder inteferometer, the output port where it emerges is influenced by the phase difference between the interferometer arms. This allows for highly precise estimation of the path length difference (delay) but is extremely sensitive to phase noise. By contrast, a delay between the arms of the two-photon Hong-Ou-Mandel interferometer directly affects the relative indistinguishability of the photon pair, affecting the rate of recorded coincidences. This likewise allows for delay estimation; notably less precise but with the advantage of being less sensitive to perturbations of the photons phase. Focusing on two-photon input states, we here investigate to what degree of noise Mach-Zehnder interferometry retains its edge over Hong-Ou-Mandel interferometry. We also explore the competing benefits of different two-photon inputs for a Mach-Zehnder interferometer, and under what parameter regimes each input performs best.
Precise measurement of the angular deviation of an object is a common task in science and technology. Many methods use light for this purpose. Some of these exploit interference effects to achieve technological advantages, such as amplification effec
Path-entangled multi-photon states allow optical phase-sensing beyond the shot-noise limit, provided that an efficient parity measurement can be implemented. Realising this experimentally is technologically demanding, as it requires coincident single
We identify theoretical limits on the photon information efficiency (PIE) of a deep-space optical communication link constrained by the average signal power and operated in the presence of background noise. The ability to implement a scalable modulat
We address the textbook problem of dynamics of a spin placed in a dc magnetic field and subjected to an ac drive. If the drive is polarized in the plane perpendicular to the dc field, the drive photons are resonantly absorbed when the spacing between
We theoretically explore a variant of RABBITT spectroscopy in which the attosecond-pulse train comprises isolated pairs of consecutive harmonics of the fundamental infrared probe frequency. In this scheme, one-photon and two-photon amplitudes interfe