ترغب بنشر مسار تعليمي؟ اضغط هنا

Noise limits on two-photon interferometric sensing

73   0   0.0 ( 0 )
 نشر من قبل Hamish Scott
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

When a photon interferes with itself while traversing a Mach-Zehnder inteferometer, the output port where it emerges is influenced by the phase difference between the interferometer arms. This allows for highly precise estimation of the path length difference (delay) but is extremely sensitive to phase noise. By contrast, a delay between the arms of the two-photon Hong-Ou-Mandel interferometer directly affects the relative indistinguishability of the photon pair, affecting the rate of recorded coincidences. This likewise allows for delay estimation; notably less precise but with the advantage of being less sensitive to perturbations of the photons phase. Focusing on two-photon input states, we here investigate to what degree of noise Mach-Zehnder interferometry retains its edge over Hong-Ou-Mandel interferometry. We also explore the competing benefits of different two-photon inputs for a Mach-Zehnder interferometer, and under what parameter regimes each input performs best.



قيم البحث

اقرأ أيضاً

Precise measurement of the angular deviation of an object is a common task in science and technology. Many methods use light for this purpose. Some of these exploit interference effects to achieve technological advantages, such as amplification effec ts, or simplified measurement devices. However, all of these schemes require phase stability to be useful. Here we show theoretically and experimentally that this drawback can be lifted by utilizing two-photon interference, which is known to be less sensitive to phase fluctuations. Our results show that non-classical interference can provide a path towards robust interferometric sensing, allowing for increased metrological precision in the presence of phase noise.
Path-entangled multi-photon states allow optical phase-sensing beyond the shot-noise limit, provided that an efficient parity measurement can be implemented. Realising this experimentally is technologically demanding, as it requires coincident single -photon detection proportional to the number of photons involved, which represents a severe challenge for achieving a practical quantum advantage over classical methods. Here, we exploit advanced quantum state engineering based on superposing two photon-pair creation events to realise a new approach that bypasses this issue. In particular, optical phase shifts are probed with a two-photon quantum state whose information is subsequently effectively transferred to a single-photon state. Notably, without any multiphoton detection, we infer phase shifts by measuring the average intensity of the single-photon beam on a photodiode, in analogy to standard classical measurements. Importantly, our approach maintains the quantum advantage: twice as many interference fringes are observed for the same phase shift, corresponding to N=2 path-entangled photons. Our results demonstrate that the advantages of quantum-enhanced phase-sensing can be fully exploited in standard intensity measurements, paving the way towards resource-efficient and practical quantum optical metrology.
We identify theoretical limits on the photon information efficiency (PIE) of a deep-space optical communication link constrained by the average signal power and operated in the presence of background noise. The ability to implement a scalable modulat ion format, Geiger-type direct photon counting detection, and complete decoding of detection events are assumed in the analysis. The maximum attainable PIE is effectively determined by the background noise strength and it exhibits a weak, logarithmic dependence on the detected number of background photons per temporal slot.
We address the textbook problem of dynamics of a spin placed in a dc magnetic field and subjected to an ac drive. If the drive is polarized in the plane perpendicular to the dc field, the drive photons are resonantly absorbed when the spacing between the Zeeman levels is close to the photon energy. This is the only resonance when the drive is circularly polarized. For linearly polarized drive, additional resonances corresponding to absorption of three, five, and multiple odd numbers of photons is possible. Interaction with the environment causes the broadening of the absorption lines. We demonstrate that the interaction with environment enables the forbidden two-photon absorption. We adopt a model of the environment in the form of random telegraph noise produced by a single fluctuator. As a result of the synchronous time fluctuations of different components of the random field, the shape of the two-photon absorption line is non-Lorentzian and depends dramatically on the drive amplitude. This shape is a monotonic curve at strong drive, while, at weak drive, it develops a two-peak structure reminiscent of an induced transparency on resonance.
We theoretically explore a variant of RABBITT spectroscopy in which the attosecond-pulse train comprises isolated pairs of consecutive harmonics of the fundamental infrared probe frequency. In this scheme, one-photon and two-photon amplitudes interfe re resulting in an asymmetric photoelectron emission. This interferometric principle has the potential of giving access to the time-resolved ionization of systems that exhibit autoionizing states, since it imprints the group delay of both one-photon and two-photon resonant transitions in the energy-resolved photoelectron anisotropy as a function of the pump-probe time delay. To bring to the fore the connection between the pump-probe ionization process and its perturbative analysis, on the the one side, and the underlying field-free scattering observables as well as the radiative couplings in the target system, on the other side, we test this scheme with an exactly solvable analytical one-dimensional model that supports both bound states and shape-resonances. The asymmetric photoelectron emission near a resonance is computed using perturbation theory as well as solving the time-dependent Schodinger equation; the results are in excellent agreement with the field-free resonant scattering properties of the model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا