ﻻ يوجد ملخص باللغة العربية
We demonstrate the underwater quantum key distribution (UWQKD) over a 10.4-meter Jerlov type III seawater channel by building a complete UWQKD system with all-optical transmission of quantum signals, synchronization signal and classical communication signal. The wavelength division multiplexing and the space-time-wavelength filtering technology are applied to ensure that the optical signals do not interfere with each other. The system is controlled by FPGA, and can be easily integrated into watertight cabins to perform field experiment. By using the decoy-state BB84 protocol with polarization encoding, we obtain a secure key rate of 1.82Kbps and an error rate of 1.55% at the attenuation of 13.26dB. We prove that the system can tolerate the channel loss up to 23.7dB, therefore may be used in the 300-meter-long Jerlov type I clean seawater channel.
We analyse the finite-size security of the efficient Bennett-Brassard 1984 protocol implemented with decoy states and apply the results to a gigahertz-clocked quantum key distribution system. Despite the enhanced security level, the obtained secure k
Twin-Field quantum key distribution (TF-QKD) and its variants, e.g. Phase-Matching QKD, Sending-or-not-sending QKD, and No Phase Post-Selection TFQKD promise high key rates at long distance to beat the rate distance limit without a repeater. The secu
Decoy state protocols are a useful tool for many quantum key distribution systems implemented with weak coherent pulses, allowing significantly better secret bit rates and longer maximum distances. In this paper we present a method to numerically fin
Quantum digital signature (QDS) guarantee the unforgeability, nonrepudiation and transferability of signature messages with information-theoretical security, and hence has attracted much attention recently. However, most previous implementations of Q
Time coding quantum key distribution with coherent faint pulses is experimentally demonstrated. A measured 3.3 % quantum bit error rate and a relative contrast loss of 8.4 % allow a 0.49 bit/pulse advantage to Bob.