Polynomial unconstrained binary optimisation inspired by optical simulation


الملخص بالإنكليزية

We propose an algorithm inspired by optical coherent Ising machines to solve the problem of polynomial unconstrained binary optimisation (PUBO). We benchmark the proposed algorithm against existing PUBO algorithms on the extended Sherrington-Kirkpatrick model and random third-degree polynomial pseudo-Boolean functions, and observe its superior performance. We also address instances of practically relevant computational problems such as protein folding and electronic structure calculations with problem sizes not accessible to existing quantum annealing devices. In particular, we successfully find the lowest-energy conformation of lattice protein molecules containing up to eleven amino-acids. The application of our algorithm to quantum chemistry sheds light on the shortcomings of approximating the electronic structure problem by a PUBO problem, which, in turn, puts into question the applicability of quantum annealers in this context.

تحميل البحث