ترغب بنشر مسار تعليمي؟ اضغط هنا

Power and Modulation Format Transfer Learning for Neural Network Equalizers in Coherent Optical Transmission Systems

108   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Transfer learning is proposed to adapt an NN-based nonlinear equalizer across different launch powers and modulation formats using a 450km TWC-fiber transmission. The result shows up to 92% reduction in epochs or 90% in the training dataset.



قيم البحث

اقرأ أيضاً

In this work, we address the important question of adaptability of artificial neural networks (NNs) used for impairment mitigation in optical transmission systems. We demonstrate that by using well-developed techniques based on the concept of transfe r learning, we can efficaciously retrain NN-based equalizers to adapt changes in the transmission system using just a fraction of the initial training data and epochs. We evaluate the potential of transfer learning to adapt the NN to changes in the launch powers, modulation formats, symbol rates, or even fiber plants (different fiber types and lengths). The numerical examples utilize the recently introduced NN equalizer consisting of a convolutional layer coupled with bi-directional long-short term memory (biLSTM) recurrent NN element. Our analysis focuses on long-haul coherent optical transmission systems for two types of fibers: the standard single-mode fiber (SSMF) and the TrueWave Classic (TWC) fiber. We underline the specific peculiarities that occur when transferring the learning in coherent optical communication systems and draw the limits for the transfer learning efficiency. Our results demonstrate the effectiveness of transfer learning for the fast adaptation of NN architectures to different transmission regimes and scenarios, paving the way for engineering flexible and universal solutions for nonlinearity mitigation.
We present the results of the comparative analysis of the performance versus complexity for several types of artificial neural networks (NNs) used for nonlinear channel equalization in coherent optical communication systems. The comparison has been c arried out using an experimental set-up with transmission dominated by the Kerr nonlinearity and component imperfections. For the first time, we investigate the application to the channel equalization of the convolution layer (CNN) in combination with a bidirectional long short-term memory (biLSTM) layer and the design combining CNN with a multi-layer perceptron. Their performance is compared with the one delivered by the previously proposed NN equalizer models: one biLSTM layer, three-dense-layer perceptron, and the echo state network. Importantly, all architectures have been initially optimized by a Bayesian optimizer. We present the derivation of the computational complexity associated with each NN type -- in terms of real multiplications per symbol so that these results can be applied to a large number of communication systems. We demonstrated that in the specific considered experimental system the convolutional layer coupled with the biLSTM (CNN+biLSTM) provides the highest Q-factor improvement compared to the reference linear chromatic dispersion compensation (2.9 dB improvement). We examine the trade-off between the computational complexity and performance of all equalizers and demonstrate that the CNN+biLSTM is the best option when the computational complexity is not constrained, while when we restrict the complexity to lower levels, the three-layer perceptron provides the best performance. Our complexity analysis for different NNs is generic and can be applied in a wide range of physical and engineering systems.
We propose a convolutional-recurrent channel equalizer and experimentally demonstrate 1dB Q-factor improvement both in single-channel and 96 x WDM, DP-16QAM transmission over 450km of TWC fiber. The new equalizer outperforms previous NN-based approaches and a 3-steps-per-span DBP.
We propose a neural network model for MDG and optical SNR estimation in SDM transmission. We show that the proposed neural-network-based solution estimates MDG and SNR with high accuracy and low complexity from features extracted after DSP.
136 - Rui Fan , Tianzhixi Yin 2019
This letter presents a novel high impedance fault (HIF) detection approach using a convolutional neural network (CNN). Compared to traditional artificial neural networks, a CNN offers translation invariance and it can accurately detect HIFs in spite of variance and noise in the input data. A transfer learning method is used to address the common challenge of a system with little training data. Extensive studies have demonstrated the accuracy and effectiveness of using a CNNbased approach for HIF detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا