ﻻ يوجد ملخص باللغة العربية
We study possible superconducting states in transition metal dichalcogenide (TMD) monolayers, assuming an on-site pairing potential that includes both intra- and inter-orbital terms. We find that if the mirror symmetry with respect to the systems plane is broken (e.g., by a substrate), this type of pairing can give rise to unconventional superconductivity, including time-reversal-invariant nodal and fully gapped topological phases. Using a multi-orbital renormalization group procedure, we show how these phases may result from the interplay between the local Coulomb repulsion, Hunds rule coupling, and phonon-mediated attraction. In particular, for a range of interaction parameters, the system transitions from a trivial phase to a nodal phase and finally to a gapped topological phase upon increasing the strength of the mirror symmetry breaking term.
In this work, we review the results of several recent works on the experimental and theoretical studies of monolayer superconducting transition metal dichalcogenides (TMD) such as superconducting MoS2 and NbSe2. We show how the strong Ising spin-orbi
We explore the physical properties of a unified microscopic theory for the coexistence of superconductivity and charge density waves in two-dimensional transition metal dichalcogenides. In the case of particle-hole symmetry the elementary particles a
Exciton optical transitions in transition-metal dichalcogenides offer unique opportunities to study rich many-body physics. Recent experiments in monolayer WSe$_2$ and WS$_2$ have shown that while the low-temperature photoluminescence from neutral ex
In this work, we provide an effective model to evaluate the one-electron dipole matrix elements governing optical excitations and the photoemission process of single-layer (SL) and bilayer (BL) transition metal dichalcogenides. By utilizing a $vec{k}
We investigate proximity-induced superconductivity in monolayers of transition metal dichalcogenides (TMDs) in the presence of an externally generated exchange field. A variety of superconducting order parameters is found to emerge from the interplay