ﻻ يوجد ملخص باللغة العربية
To achieve higher accuracy in machine learning tasks, very deep convolutional neural networks (CNNs) are designed recently. However, the large memory access of deep CNNs will lead to high power consumption. A variety of hardware-friendly compression methods have been proposed to reduce the data transfer bandwidth by exploiting the sparsity of feature maps. Most of them focus on designing a specialized encoding format to increase the compression ratio. Differently, we observe and exploit the sparsity distinction between activations in earlier and later layers to improve the compression ratio. We propose a novel hardware-friendly transform-based method named 1D-Discrete Cosine Transform on Channel dimension with Masks (DCT-CM), which intelligently combines DCT, masks, and a coding format to compress activations. The proposed algorithm achieves an average compression ratio of 2.9x (53% higher than the state-of-the-art transform-based feature map compression works) during inference on ResNet-50 with an 8-bit quantization scheme.
Convolutional neural networks (CNNs) achieve state-of-the-art accuracy in a variety of tasks in computer vision and beyond. One of the major obstacles hindering the ubiquitous use of CNNs for inference on low-power edge devices is their high computat
In this paper, we compress convolutional neural network (CNN) weights post-training via transform quantization. Previous CNN quantization techniques tend to ignore the joint statistics of weights and activations, producing sub-optimal CNN performance
We propose a versatile deep image compression network based on Spatial Feature Transform (SFT arXiv:1804.02815), which takes a source image and a corresponding quality map as inputs and produce a compressed image with variable rates. Our model covers
Coherent imaging systems like synthetic aperture radar are susceptible to multiplicative noise that makes applications like automatic target recognition challenging. In this paper, NeighCNN, a deep learning-based speckle reduction algorithm that hand
In this paper, we present an end-to-end video compression network for P-frame challenge on CLIC. We focus on deep neural network (DNN) based video compression, and improve the current frameworks from three aspects. First, we notice that pixel space r