ﻻ يوجد ملخص باللغة العربية
In recent years, two-dimensional van der Waals materials have emerged as an important platform for the observation of long-range ferromagnetic order in atomically thin layers. Although heterostructures of such materials can be conceived to harness and couple a wide range of magneto-optical and magneto-electrical properties, technologically relevant applications require Curie temperatures at or above room-temperature and the ability to grow films over large areas. Here we demonstrate the large-area growth of single-crystal ultrathin films of stoichiometric Fe5GeTe2 on an insulating substrate using molecular beam epitaxy. Magnetic measurements show the persistence of soft ferromagnetism up to room temperature, with a Curie temperature of 293 K, and a weak out-of-plane magnetocrystalline anisotropy. Surface, chemical, and structural characterizations confirm the layer-by-layer growth, 5:1:2 Fe:Ge:Te stoichiometric elementary composition, and single crystalline character of the films.
The van der Waals ferromagnet Fe5GeTe2 has a Curie temperature TC of about 270 K, which can be raised above room temperature by tuning the Fe deficiency content. To achieve insights into its ferromagnetic exchange, we have studied the critical behavi
Evolution of magnetism in single crystals of the van der Waals compound VI3 in external pressure up to 7.3 GPa studied by measuring magnetization and ac magnetic susceptibility is reported. Four magnetic phase transitions, at T1 = 54.5 K, T2 = 53 K,
Fe5-xGeTe2 is a van der Waals material with one of the highest reported bulk Curie temperatures, $T_C$ ~ 310K. In this study, theoretical calculations and experiments are utilized to demonstrate that the magnetic ground state is highly sensitive to l
The recent emergence of 2D van der Waals magnets down to atomic layer thickness provides an exciting platform for exploring quantum magnetism and spintronics applications. The van der Waals nature stabilizes the long-range ferromagnetic order as a re
We report on the controlled growth of h-BN/graphite by means of molecular beam epitaxy (MBE). X-ray photoelectron spectroscopy (XPS) suggests an interface without any reaction or intermixing, while the angle resolved photoemission spectroscopy (ARPES