ﻻ يوجد ملخص باللغة العربية
We provide a pure state formulation for hydrodynamic dynamics of isolated quantum many-body systems. A pure state describing quantum systems in local thermal equilibrium is constructed, which we call a local thermal pure quantum ($ell$TPQ) state. We show that the thermodynamic functional and the expectation values of local operators (including a real-time correlation function) calculated from the $ell$TPQ state converge to those from a local Gibbs ensemble in the large fluid-cell limit. As a numerical demonstration, we investigate a one-dimensional spin chain and observe the hydrodynamic relaxation obeying the Fouriers law. We further prove the second law of thermodynamics and the quantum fluctuation theorem, which are also validated numerically. The $ell$TPQ formulation gives a useful theoretical basis to describe the emergent hydrodynamic behavior of quantum many-body systems furnished with a numerical efficiency, being applicable to both the non-relativistic and relativistic regimes.
By exploring a phase space hydrodynamics description of one-dimensional free Fermi gas, we discuss how systems settle down to steady states described by the generalized Gibbs ensembles through quantum quenches. We investigate time evolutions of the F
We derive a large-scale hydrodynamic equation, including diffusive and dissipative effects, for systems with generic static position-dependent driving forces coupling to local conserved quantities. We show that this equation predicts entropy increase
Describing and understanding the motion of quantum gases out of equilibrium is one of the most important modern challenges for theorists. In the groundbreaking Quantum Newton Cradle experiment [Kinoshita, Wenger and Weiss, Nature 440, 900, 2006], qua
We formulate a new ``Wigner characteristics based method to calculate entanglement entropies of subsystems of Fermions using Keldysh field theory. This bypasses the requirements of working with complicated manifolds for calculating R{e}nyi entropies
We revisit early suggestions to observe spin-charge separation (SCS) in cold-atom settings {in the time domain} by studying one-dimensional repulsive Fermi gases in a harmonic potential, where pulse perturbations are initially created at the center o