An inverse random source problem for the biharmonic wave equation


الملخص بالإنكليزية

This paper is concerned with an inverse source problem for the stochastic biharmonic operator wave equation. The driven source is assumed to be a microlocally isotropic Gaussian random field with its covariance operator being a classical pseudo-differential operator. The well-posedness of the direct problem is examined in the distribution sense and the regularity of the solution is discussed for the given rough source. For the inverse problem, the strength of the random source, involved in the principal symbol of its covariance operator, is shown to be uniquely determined by a single realization of the magnitude of the wave field averaged over the frequency band with probability one. Numerical experiments are presented to illustrate the validity and effectiveness of the proposed method for the case that the random source is the white noise.

تحميل البحث