ﻻ يوجد ملخص باللغة العربية
We consider the effect of the coupling between 2D quantum rotors near an XY ferromagnetic quantum critical point and spins of itinerant fermions. We analyze how this coupling affects the dynamics of rotors and the self-energy of fermions.A common belief is that near a $mathbf{q}=0$ ferromagnetic transition, fermions induce an $Omega/q$ Landau damping of rotors (i.e., the dynamical critical exponent is $z=3$) and Landau overdamped rotors give rise to non-Fermi liquid fermionic self-energy $Sigmapropto omega^{2/3}$. This behavior has been confirmed in previous quantum Monte Carlo studies. Here we show that for the XY case the behavior is different. We report the results of large scale quantum Monte Carlo simulations, which clearly show that at small frequencies $z=2$ and $Sigmapropto omega^{1/2}$. We argue that the new behavior is associated with the fact that a fermionic spin is by itself not a conserved quantity due to spin-spin coupling to rotors, and a combination of self-energy and vertex corrections replaces $1/q$ in the Landau damping by a constant. We discuss the implication of these results to experiment
We explore the Matsubara quasiparticle fraction and the pseudogap of the two-dimensional Hubbard model with the dynamical cluster quantum Monte Carlo method. The character of the quasiparticle fraction changes from non-Fermi liquid, to marginal Fermi
We investigate the critical relaxational dynamics of the S=1/2 Heisenberg ferromagnet on a simple cubic lattice within the Handscomb prescription on which it is a diagrammatic series expansion of the partition function that is computed by means of a
We study interacting Majorana fermions in two dimensions as a low-energy effective model of a vortex lattice in two-dimensional time-reversal-invariant topological superconductors. For that purpose, we implement ab-initio quantum Monte Carlo simulati
The interplay between lattice gauge theories and fermionic matter accounts for fundamental physical phenomena ranging from the deconfinement of quarks in particle physics to quantum spin liquid with fractionalized anyons and emergent gauge structures
Metallic quantum critical phenomena are believed to play a key role in many strongly correlated materials, including high temperature superconductors. Theoretically, the problem of quantum criticality in the presence of a Fermi surface has proven to