ترغب بنشر مسار تعليمي؟ اضغط هنا

Yang-Mills propagators in linear covariant gauges from Nielsen identities

90   0   0.0 ( 0 )
 نشر من قبل Markus Huber Q.
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate gluon and ghost propagators in Yang-Mills theory in linear covariant gauges. To that end, we utilize Nielsen identities with Landau gauge propagators and vertices as the starting point. We present and discuss numerical results for the gluon and ghost propagators for values of the gauge parameter $0<xi le 5$. Extrapolating the propagators to $xi to infty $ we find the expected qualitative behavior. We provide arguments that our results are quantitatively reliable at least for values $xilesssim 1/2$ of the gauge fixing parameter. It is shown that the correlation functions, and in particular the ghost propagator, change significantly with increasing gauge parameter. In turn, the ghost-gluon running coupling as well as the position of the zero crossing of the Schwinger function of the gluon propagator remain within the uncertainties of our calculation unchanged.



قيم البحث

اقرأ أيضاً

Recent works have explored non-perturbative effects due to the existence of (infinitesimal) Gribov copies in Yang-Mills-Chern-Simons theories in three Euclidean dimensions. In particular, the removal of such copies modify the gauge field propagator b y a self-consistent dynamically generated mass parameter, the Gribov parameter. Due to the interplay with the topological mass introduced by the Chern-Simons term, the propagator features a non-trivial set of phases with poles of different nature, leading to the possible interpretation of a confinfing to deconfining phase transition. Inhere, we restore the BRST symmetry which is softly broken by the elimination of gauge copies and provide a BRST-invariant discussion of such a transition. In order to make clear all physical statements, we deal with linear covariant gauges which contain a gauge parameter and therefore allow for an explicit check of gauge parameter independence of physical results. We also discuss the generation of condensates due to the infrared relevance of infinitesimal Gribov copies.
In order to construct a gauge invariant two-point function in a Yang-Mills theory, we propose the use of the all-order gauge invariant transverse configurations A^h. Such configurations can be obtained through the minimization of the functional A^2_{ min} along the gauge orbit within the BRST invariant formulation of the Gribov-Zwanziger framework recently put forward in [1,2] for the class of the linear covariant gauges. This correlator turns out to provide a characterization of non-perturbative aspects of the theory in a BRST invariant and gauge parameter independent way. In particular, it turns out that the poles of <A^h A^h> are the same as those of the transverse part of the gluon propagator, which are also formally shown to be independent of the gauge parameter entering the gauge condition through the Nielsen identities. The latter follow from the new exact BRST invariant formulation introduced before. Moreover, the correlator <A^h A^h> enables us to attach a BRST invariant meaning to the possible positivity violation of the corresponding temporal Schwinger correlator, giving thus for the first time a consistent, gauge parameter independent, setup to adopt the positivity violation of <A^h A^h> as a signature for gluon confinement. Finally, in the context of gauge theories supplemented with a fundamental Higgs field, we use <A^h A^h> to probe the pole structure of the massive gauge boson in a gauge invariant fashion.
In this work, we study the propagators of matter fields within the framework of the Refined Gribov-Zwanziger theory, which takes into account the effects of the Gribov copies in the gauge-fixing quantization procedure of Yang-Mills theory. In full an alogy with the pure gluon sector of the Refined Gribov-Zwanziger action, a non-local long-range term in the inverse of the Faddeev-Popov operator is added in the matter sector. Making use of the recent BRST invariant formulation of the Gribov-Zwanziger framework achieved in [Capri et al 2016], the propagators of scalar and quark fields in the adjoint and fundamental representations of the gauge group are worked out explicitly in the linear covariant, Curci-Ferrari and maximal Abelian gauges. Whenever lattice data are available, our results exhibit good qualitative agreement.
111 - Marco Frasca 2008
We present a strong coupling expansion that permits to develop analysis of quantum field theory in the infrared limit. Application to a quartic massless scalar field gives a massive spectrum and the propagator in this regime. We extend the approach t o a pure Yang-Mills theory obtaining analogous results. The gluon propagator is compared satisfactorily with lattice results and similarly for the spectrum. Comparison with experimental low energy spectrum of QCD supports the view that $sigma$ resonance is indeed a glueball. The gluon propagator we obtained is finally used to formulate a low energy Lagrangian for QCD that reduces to a Nambu-Jona-Lasinio model with all the parameters fixed by those of the full theory.
In this work we explore the applicability of a special gluon mass generating mechanism in the context of the linear covariant gauges. In particular, the implementation of the Schwinger mechanism in pure Yang-Mills theories hinges crucially on the inc lusion of massless bound-state excitations in the fundamental nonperturbative vertices of the theory. The dynamical formation of such excitations is controlled by a homogeneous linear Bethe-Salpeter equation, whose nontrivial solutions have been studied only in the Landau gauge. Here, the form of this integral equation is derived for general values of the gauge-fixing parameter, under a number of simplifying assumptions that reduce the degree of technical complexity. The kernel of this equation consists of fully-dressed gluon propagators, for which recent lattice data are used as input, and of three-gluon vertices dressed by a single form factor, which is modelled by means of certain physically motivated Ansatze. The gauge-dependent terms contributing to this kernel impose considerable restrictions on the infrared behavior of the vertex form factor; specifically, only infrared finite Ansatze are compatible with the existence of nontrivial solutions. When such Ansatze are employed, the numerical study of the integral equation reveals a continuity in the type of solutions as one varies the gauge-fixing parameter, indicating a smooth departure from the Landau gauge. Instead, the logarithmically divergent form factor displaying the characteristic zero crossing, while perfectly consistent in the Landau gauge, has to undergo a dramatic qualitative transformation away from it, in order to yield acceptable solutions. The possible implications of these results are briefly discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا