ترغب بنشر مسار تعليمي؟ اضغط هنا

First-principles study on the electron-phonon coupling and magnetoresistance of LaBi under pressure

153   0   0.0 ( 0 )
 نشر من قبل Kai Liu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The extremely large magnetoresistance (XMR) material LaBi was reported to become superconducting under pressure accompanying with suppressed magnetoresistance. However, the underlying mechanism is unclear. By using first-principles electronic structure calculations in combination with a semiclassical model, we have studied the electron-phonon coupling and magnetoresistance of LaBi in the pressure range from 0 to 18 GPa. Our calculations show that LaBi undergoes a structural phase transition from a face-centered cubic lattice to a primitive tetragonal lattice at $sim$7 GPa, verifying previous experimental results. Meanwhile, LaBi remains topologically nontrivial across the structural transition. Under all pressures that we have studied, the phonon-mediated mechanism based on the weak electron-phonon coupling cannot account for the observed superconductivity in LaBi, and the calculated magnetoresistance for LaBi does not show a suppression. The distinct difference between our calculations and experimental observations suggests either the existence of extra Bi impurities in the real LaBi compound or the possibility of other unknown mechanism.



قيم البحث

اقرأ أيضاً

336 - Z. P. Yin , S. Y. Savrasov , 2006
Linear response methods are applied to identify the increase in electron-phonon coupling in elemental yttrium that is responsible for its high superconducting critical temperature Tc, which reaches nearly 20 K at 115 GPa. While the evolution of the b and structure and density of states is smooth and seemingly modest, there is strong increase in the 4d content of the occupied conduction states under pressure. We find that the transverse mode near the L point of the fcc Brillouin zone, already soft at ambient pressure, becomes unstable (in harmonic approximation) at a relative volume V/Vo=0.60 (P ~ 42 GPa). The coupling to transverse branches is relatively strong at all high symmetry zone boundary points X, K, and L. Coupling to the longitudinal branches is not as strong, but extends over more regions of the Brillouin zone and involves higher frequencies. Evaluation of the electron-phonon spectral function $alpha^2F(omega)$ shows a very strong increase with pressure of coupling in the 2-7 meV range, with a steady increase also in the 7-20 meV range. These results demonstrates strong electron-phonon coupling in this system that can account for the observed range of Tc.
Recent experiments showed the distinct observations on the transition metal ditelluride NiTe$_2$ under pressure: one reported a superconducting phase transition at 12 GPa, whereas another observed a sign reversal of Hall resistivity at 16 GPa without the appearance of superconductivity. To clarify the controversial experimental phenomena, we have carried out first-principles electronic structure calculations on the compressed NiTe$_2$ with structure searching and optimization. Our calculations show that the pressure can transform NiTe$_2$ from a layered P-3m1 phase to a cubic Pa-3 phase at $sim$10 GPa. Meanwhile, both the P-3m1 and Pa-3 phases possess nontrivial topological properties. The calculated superconducting $T_c$s for these two phases based on the electron-phonon coupling theory both approach 0 K. Further magnetic transport calculations reveal that the sign of Hall resistance for the Pa-3 phase is sensitive to the pressure and the charge doping, in contrast to the case of the P-3m1 phase. Our theoretical predictions on the compressed NiTe$_2$ wait for careful experimental examinations.
Recent high pressure experiments discovered abnormal double-dome superconductivities in the newly-synthesized kagome materials $A$V$_3$Sb$_5$ ($A$ = K, Rb, Cs), which also host abundant emergent quantum phenomena such as charge density wave (CDW), an omalous Hall effect, nontrivial topological property, etc. In this work, by using first-principles electronic structure calculations, we have studied the CDW state, superconductivity, and topological property in CsV$_3$Sb$_5$ under pressures ($<$ 50 GPa). Based on the electron-phonon coupling theory, our calculated superconducting $T_text{c}$s are consistent with the observed ones in the second superconducting dome at high pressure, but are much higher than the measured values at low pressure. The further calculations including the Hubbard U indicate that with modest electron-electron correlation the magnetism on the V atoms exists at low pressure and diminishes gradually at high pressure. We thus propose that the experimentally observed superconductivity in CsV$_3$Sb$_5$ at ambient/low pressures may still belong to the conventional Bardeen-Cooper-Schrieffer (BCS) type but is partially suppressed by the V magnetism, while the superconductivity under high pressure is fully conventional without invoking the magnetism. We also predict that there are a second weak CDW state and topological phase transitions in CsV$_3$Sb$_5$ under pressures. Our theoretical assertion calls for future experimental examination.
A recent experiment reported that robust superconductivity appears in NbTi alloys under ultrahigh pressures with an almost constant superconducting $T_c$ of ~19 K from 120 to 261.7 GPa [J. Guo et al., Adv. Mater. 31, 1807240 (2019)], which is very ra re among the known superconductors. We investigate the origin of this novel superconducting behavior in NbTi alloys based on density functional theory and density functional perturbation theory calculations. Our results indicate that the pressure tends to transform NbTi alloys from a random phase to a uniformly ordered crystal phase, and the exotic robust superconductivity of NbTi alloys can still be understood in the framework of BCS theory. The Nb element in NbTi alloys plays a dominant role in the superconductivity at low pressure, while the NbTi crystal with an alternative and uniform Nb and Ti atomic arrangement may be responsible for the stable superconductivity under high pressures. The robust superconducting transition temperature of NbTi under ultrahigh pressure can be explained by a synergistic effect of the enhanced phonon frequency, the modestly reduced total electron-phonon coupling, and the pressure-dependent screened Coulomb repulsion.
159 - Jun Dai , Zhenyu Li , 2009
FeAs- single layer is tested as a simple model for LaFeAsO and BaFe2As2 based on first-principles calculations using generalized gradient approximation (GGA) and GGA+U. The calculated single- layer geometric and electronic structures are inconsistent with that of bulk materials. The bulk collinear antiferromagnetic ground state is failed to be obtained in the FeAs- single layer. The monotonous behavior of the Fe-As distance in z direction upon electron or hole doping is also in contrast with bulk materials. Our results indicate that, in LaFeAsO and BaFe2As2, interactions between FeAs layer and other layers beyond simple charge doping are important, and a single FeAs layer may not represent a good model for Fe based superconducting materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا