ﻻ يوجد ملخص باللغة العربية
The chiral anomaly underlies a broad number of phenomena, from enhanced electronic transport in topological metals to anomalous currents in the quark-gluon plasma. The discovery of topological states of matter in non-Hermitian systems -- effective descriptions of dissipative systems -- raises the question of whether there are anomalous conservation laws that remain unaccounted for. To answer this question, we consider both $1+1$ and $3+1$ dimensions, presenting a unified formulation to calculate anomalous responses in Hermitianized, anti-Hermitianized and non-Hermitian systems of massless electrons with complex Fermi velocities coupled to non-Hermitian gauge fields. Our results indicate that the quantum conservation laws of chiral currents of non-Hermitian systems are not related to those in Hermitianized and anti-Hermitianized systems, as would be expected classically, due to novel anomalous terms that we derive. These may have implications for a broad class of emerging experimental systems that realize non-Hermitian Hamiltonians.
Eigenenergies of a non-Hermitian system without parity-time symmetry are complex in general. Here, we show that the chiral boundary states of non-Hermitian topological insulators without parity-time symmetry can be Hermitian with real eigenenergies u
Non-Hermitian topological phases bear a number of exotic properties, such as the non-Hermitian skin effect and the breakdown of conventional bulk-boundary correspondence. In this paper, we introduce an unsupervised machine learning approach to classi
The Lindhard function represents the basic building block of many-body physics and accounts for charge response, plasmons, screening, Friedel oscillation, RKKY interaction etc. Here we study its non-Hermitian version in one dimension, where quantum e
We analyze the Chiral Magnetic Effect for non-Hermitian fermionic systems using the biorthogonal formulation of quantum mechanics. In contrast to the Hermitian chiral counterparts, we show that the Chiral Magnetic Effect may take place in thermal equ
We show that the topological central charge of a topological phase can be directly accessed from the ground-state wavefunctions for a system on a surface as a Berry curvature produced by adiabatic variation of the metric on the surface, at least up t