ﻻ يوجد ملخص باللغة العربية
The three pentaquark states, $P_{c}(4312)$, $P_{c}(4440)$, and $P_{c}(4457)$, discovered by the LHCb Collaboration in 2019, can be nicely arranged into a multiplet of $bar{D}^{(ast)}Sigma_{c}^{(ast)}$ of seven molecules dictated by heavy quark spin symmetry. In this work we employ the effective Lagrangian approach to investigate the two decay modes of $P_{c}(4457)$, $P_{c}(4457) to P_{c}(4312) pi$ and $P_{c}(4457) to P_{c}(4312) gamma$, via the triangle mechanism, assuming that $P_{c}(4457)$ and $P_{c}(4312)$ are $bar{D}^{ast}Sigma_{c}$ and $bar{D}Sigma_{c}$ bound states but the spin of $P_{c}(4457)$ can be either 1/2 or 3/2. Our results show that the spin of $P_{c}(4457)$ can not be discriminated through these two decay modes. The decay widths of $P_{c}(4457) to P_{c}(4312) pi$ and $P_{c}(4457) to P_{c}(4312) gamma$ are estimated to be of order of 100 keV and 1 keV, respectively. The ratio of the partial decay widths of $P_{c}(4457) to P_{c}(4312) pi$ to $P_{c}(4457) to P_{c}(4312) gamma$ is similar to the ratio of $D^{ast}to Dpi$ to $D^{ast}to Dgamma$, which could be used to check the molecular nature of $P_{c}(4457)$ and $P_{c}(4312)$ if they can be observed in the future.
The production of the hidden-charm pentaquarks $P_{c}$ via pion-induced reaction on a proton target is investigated within an effective Lagrangian approach. Three experimentally observed states, $P_c(4312)$, $P_c(4440)$, and $P_c(4457)$, are consider
The COMPASS collaboration has collected the currently largest data set on diffractively produced $pi^-pi^-pi^+$ final states using a negative pion beam of 190 GeV/c momentum impinging on a stationary proton target. This data set allows for a systemat
Recently, the LHCb Collaboration reported a new structure $P_{cs}(4459)$ with a mass of 19 MeV below the $Xi_c bar{D}^{*} $ threshold. It may be a candidate of molecular state from the $Xi_c bar{D}^{*} $ interaction. In the current work, we perform a
We have carried out an experiment to search for a neutron-rich hypernucleus, $^6_{Lambda}$H, by the $^6$Li($pi^-,K^+$) reaction at $p_{pi^-}$ =1.2 GeV/$c$. The obtained missing mass spectrum with an estimated energy resolution of 3.2 MeV (FWHM) showe
The cross section of the $ep to e p gamma$ reaction has been measured at $Q^2 = 0.33$ (GeV/c)$^2$. The experiment was performed using the electron beam of the MAMI accelerator and the standard detector setup of the A1 Collaboration. The cross section