ﻻ يوجد ملخص باللغة العربية
Electric quadrupole (E2) matrix elements provide a measure of nuclear deformation and related collective structure. Ground-state quadrupole moments in particular are known to high precision in many p-shell nuclei. While the experimental electric quadrupole moment only measures the proton distribution, both proton and neutron quadrupole moments are needed to probe proton-neutron asymmetry in the nuclear deformation. We seek insight into the relation between these moments through the ab initio no-core configuration interaction (NCCI), or no-core shell model (NCSM), approach. Converged ab initio calculations for quadrupole moments are particularly challenging, due to sensitivity to long-range behavior of the wave functions. We therefore study more robustly-converged ratios of quadrupole moments: across mirror nuclides, or of proton and neutron quadrupole moments within the same nuclide. In calculations for mirror pairs in the p-shell, we explore how well the predictions for mirror quadrupole moments agree with experiment and how well isospin (mirror) symmetry holds for quadrupole moments across a mirror pair.
The neutron skin of nuclei is an important fundamental property, but its accurate measurement faces many challenges. Inspired by charge symmetry of nuclear forces, the neutron skin of a neutron-rich nucleus is related to the difference between the ch
We present a comprehensive study on the low-lying states of neutron-rich Er, Yb, Hf, and W isotopes across the $N=126$ shell with a multi-reference covariant density functional theory. Beyond mean-field effects from shape mixing and symmetry restorat
The properties of loosely bound proton-rich nuclei around A = 20 are investigated within the framework of nuclear shell model. In these nuclei, the strength of the effective interactions involving the loosely bound proton s1=2 orbit are significantly
The transition quadrupole moments, $Q_{t}$, of rotational bands in the neutron-rich, even-mass $^{102-108}$Mo and $^{108-112}$Ru nuclei were measured in the 8 to 16 $hbar $ spin range with the Doppler-shift attenuation method. The nuclei were populat
The additivity principle of the extreme shell model stipulates that an average value of a one-body operator be equal to the sum of the core contribution and effective contributions of valence (particle or hole) nucleons. For quadrupole moment and ang