ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Transformer-based Sequential Recommenders through Preference Editing

99   0   0.0 ( 0 )
 نشر من قبل Muyang Ma
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the key challenges in Sequential Recommendation (SR) is how to extract and represent user preferences. Traditional SR methods rely on the next item as the supervision signal to guide preference extraction and representation. We propose a novel learning strategy, named preference editing. The idea is to force the SR model to discriminate the common and unique preferences in different sequences of interactions between users and the recommender system. By doing so, the SR model is able to learn how to identify common and unique user preferences, and thereby do better user preference extraction and representation. We propose a transformer based SR model, named MrTransformer (Multi-preference Transformer), that concatenates some special tokens in front of the sequence to represent multiple user preferences and makes sure they capture different aspects through a preference coverage mechanism. Then, we devise a preference editing-based self-supervised learning mechanism for training MrTransformer which contains two main operations: preference separation and preference recombination. The former separates the common and unique user preferences for a given pair of sequences. The latter swaps the common preferences to obtain recombined user preferences for each sequence. Based on the preference separation and preference recombination operations, we define two types of SSL loss that require that the recombined preferences are similar to the original ones, and the common preferences are close to each other. We carry out extensive experiments on two benchmark datasets. MrTransformer with preference editing significantly outperforms state-of-the-art SR methods in terms of Recall, MRR and NDCG. We find that long sequences whose user preferences are harder to extract and represent benefit most from preference editing.



قيم البحث

اقرأ أيضاً

Algorithmic machine teaching studies the interaction between a teacher and a learner where the teacher selects labeled examples aiming at teaching a target hypothesis. In a quest to lower teaching complexity, several teaching models and complexity me asures have been proposed for both the batch settings (e.g., worst-case, recursive, preference-based, and non-clashing models) and the sequential settings (e.g., local preference-based model). To better understand the connections between these models, we develop a novel framework that captures the teaching process via preference functions $Sigma$. In our framework, each function $sigma in Sigma$ induces a teacher-learner pair with teaching complexity as $TD(sigma)$. We show that the above-mentioned teaching models are equivalent to specific types/families of preference functions. We analyze several properties of the teaching complexity parameter $TD(sigma)$ associated with different families of the preference functions, e.g., comparison to the VC dimension of the hypothesis class and additivity/sub-additivity of $TD(sigma)$ over disjoint domains. Finally, we identify preference functions inducing a novel family of sequential models with teaching complexity linear in the VC dimension: this is in contrast to the best-known complexity result for the batch models, which is quadratic in the VC dimension.
The large-scale recommender system mainly consists of two stages: matching and ranking. The matching stage (also known as the retrieval step) identifies a small fraction of relevant items from billion-scale item corpus in low latency and computationa l cost. Item-to-item collaborative filter (item-based CF) and embedding-based retrieval (EBR) have been long used in the industrial matching stage owing to its efficiency. However, item-based CF is hard to meet personalization, while EBR has difficulty in satisfying diversity. In this paper, we propose a novel matching architecture, Path-based Deep Network (named PDN), which can incorporate both personalization and diversity to enhance matching performance. Specifically, PDN is comprised of two modules: Trigger Net and Similarity Net. PDN utilizes Trigger Net to capture the users interest in each of his/her interacted item, and Similarity Net to evaluate the similarity between each interacted item and the target item based on these items profile and CF information. The final relevance between the user and the target item is calculated by explicitly considering users diverse interests, ie aggregating the relevance weights of the related two-hop paths (one hop of a path corresponds to user-item interaction and the other to item-item relevance). Furthermore, we describe the architecture design of a matching system with the proposed PDN in a leading real-world E-Commerce service (Mobile Taobao App). Based on offline evaluations and online A/B test, we show that PDN outperforms the existing solutions for the same task. The online results also demonstrate that PDN can retrieve more personalized and more diverse relevant items to significantly improve user engagement. Currently, PDN system has been successfully deployed at Mobile Taobao App and handling major online traffic.
In order to model the evolution of user preference, we should learn user/item embeddings based on time-ordered item purchasing sequences, which is defined as Sequential Recommendation (SR) problem. Existing methods leverage sequential patterns to mod el item transitions. However, most of them ignore crucial temporal collaborative signals, which are latent in evolving user-item interactions and coexist with sequential patterns. Therefore, we propose to unify sequential patterns and temporal collaborative signals to improve the quality of recommendation, which is rather challenging. Firstly, it is hard to simultaneously encode sequential patterns and collaborative signals. Secondly, it is non-trivial to express the temporal effects of collaborative signals. Hence, we design a new framework Temporal Graph Sequential Recommender (TGSRec) upon our defined continuous-time bi-partite graph. We propose a novel Temporal Collaborative Trans-former (TCT) layer in TGSRec, which advances the self-attention mechanism by adopting a novel collaborative attention. TCT layer can simultaneously capture collaborative signals from both users and items, as well as considering temporal dynamics inside sequential patterns. We propagate the information learned fromTCTlayerover the temporal graph to unify sequential patterns and temporal collaborative signals. Empirical results on five datasets show that TGSRec significantly outperforms other baselines, in average up to 22.5% and 22.1%absolute improvements in Recall@10and MRR, respectively.
Most sequential recommendation models capture the features of consecutive items in a user-item interaction history. Though effective, their representation expressiveness is still hindered by the sparse learning signals. As a result, the sequential re commender is prone to make inconsistent predictions. In this paper, we propose a model, SSI, to improve sequential recommendation consistency with Self-Supervised Imitation. Precisely, we extract the consistency knowledge by utilizing three self-supervised pre-training tasks, where temporal consistency and persona consistency capture user-interaction dynamics in terms of the chronological order and persona sensitivities, respectively. Furthermore, to provide the model with a global perspective, global session consistency is introduced by maximizing the mutual information among global and local interaction sequences. Finally, to comprehensively take advantage of all three independent aspects of consistency-enhanced knowledge, we establish an integrated imitation learning framework. The consistency knowledge is effectively internalized and transferred to the student model by imitating the conventional prediction logit as well as the consistency-enhanced item representations. In addition, the flexible self-supervised imitation framework can also benefit other student recommenders. Experiments on four real-world datasets show that SSI effectively outperforms the state-of-the-art sequential recommendation methods.
Recommender systems assist users in navigating complex information spaces and focus their attention on the content most relevant to their needs. Often these systems rely on user activity or descriptions of the content. Social annotation systems, in w hich users collaboratively assign tags to items, provide another means to capture information about users and items. Each of these data sources provides unique benefits, capturing different relationships. In this paper, we propose leveraging multiple sources of data: ratings data as users report their affinity toward an item, tagging data as users assign annotations to items, and item data collected from an online database. Taken together, these datasets provide the opportunity to learn rich distributed representations by exploiting recent advances in neural network architectures. We first produce representations that subjectively capture interesting relationships among the data. We then empirically evaluate the utility of the representations to predict a users rating on an item and show that it outperforms more traditional representations. Finally, we demonstrate that traditional representations can be combined with representations trained through a neural network to achieve even better results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا