An open challenge in physics is to expand the frontiers of the validity of quantum mechanics by evidencing nonclassicality of the centre of mass state of a macroscopic object. Yet another equally important task is to evidence the essential nonclassicality of the interactions which act between macroscopic objects. Here we introduce a new tool to meet these challenges: massive spatial qubits. In particular, we show that if two distinct localized states of a mass are used as the $|0rangle$ and $|1rangle$ states of a qubit, then we can measure this encoded spatial qubit with a high fidelity in the $sigma_x, sigma_y$ and $sigma_z$ bases simply by measuring its position after different durations of free evolution. We show how this technique can be used to reveal an irreducible nonclassicality through a Bell-inequality violation arising from the entanglement of the centre of mass of a nano-crystal with its spin in a Stern-Gerlach setup. Secondly, we show how our methodology, in conjuction with the Casimir interaction, offers a powerful method to create and certify non-Gaussian entanglement between two neutral nano-objects. Fundamentally, the generation of such an entanglement provides an empirical means for demonstrating an inherent quantumness of the Casimir interaction.