ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory requirements for SM Higgs and EW precision physics at the FCC-ee

106   0   0.0 ( 0 )
 نشر من قبل Juergen Reuter
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

High precision experimental measurements of the properties of the Higgs boson at $sim$ 125 GeV as well as electroweak precision observables such as the W -boson mass or the effective weak leptonic mixing angle are expected at future $e^+e^-$ colliders such as the FCC-ee. This high anticipated precision has to be matched with theory predictions for the measured quantities at the same level of accuracy. We briefly summarize the status of these predictions within the Standard Model (SM) and of the tools that are used for their determination. We outline how the theory predictions will have to be improved in order to reach the required accuracy, and also comment on the simulation frameworks for the Higgs and EW precision program.



قيم البحث

اقرأ أيضاً

Due to the high anticipated experimental precision at the Future Circular Collider FCC-ee (or other proposed $e^+e^-$ colliders, such as ILC, CLIC, or CEPC) for electroweak and Higgs-boson precision measurements, theoretical uncertainties may have, i f unattended, an important impact on the interpretation of these measurements within the Standard Model (SM), and thus on constraints on new physics. Current theory uncertainties, which would dominate the total uncertainty, need to be strongly reduced through future advances in the calculation of multi-loop radiative corrections together with improved experimental and theoretical control of the precision of SM input parameters. This document aims to provide an estimate of the required improvement in calculational accuracy in view of the anticipated high precision at the FCC-ee. For the most relevant electroweak and Higgs-boson precision observables we evaluate the corresponding quantitative impact.
122 - A. Blondel , J. Gluza , S. Jadach 2019
The Future Circular Collider (FCC) at CERN, a proposed 100-km circular facility with several colliders in succession, culminates with a 100 TeV proton-proton collider. It offers a vast new domain of exploration in particle physics, with orders of mag nitude advances in terms of Precision, Sensitivity and Energy. The implementation plan foresees, as a first step, an Electroweak Factory electron-positron collider. This high luminosity facility, operating between 90 and 365 GeV centre-of-mass energy, will study the heavy particles of the Standard Model, Z, W, Higgs, and top with unprecedented accuracy. The Electroweak Factory $e^+e^-$ collider constitutes a real challenge to the theory and to precision calculations, triggering the need for the development of new mathematical methods and software tools. A first workshop in 2018 had focused on the first FCC-ee stage, the Tera-Z, and confronted the theoretical status of precision Standard Model calculations on the Z-boson resonance to the experimental demands. The second workshop in January 2019, which is reported here, extended the scope to the next stages, with the production of W-bosons (FCC-ee-W), the Higgs boson (FCC-ee-H) and top quarks (FCC-ee-tt). In particular, the theoretical precision in the determination of the crucial input parameters, alpha_QED, alpha_QCD, M_W, m_t at the level of FCC-ee requirements is thoroughly discussed. The requirements on Standard Model theory calculations were spelled out, so as to meet the demanding accuracy of the FCC-ee experimental potential. The discussion of innovative methods and tools for multi-loop calculations was deepened. Furthermore, phenomenological analyses beyond the Standard Model were discussed, in particular the effective theory approaches. The reports of 2018 and 2019 serve as white papers of the workshop results and subsequent developments.
The future lepton colliders proposed for the High Energy and Precision Frontier set stringent demands on theory. The most ambitious, broad-reaching and demanding project is the FCC-ee. We consider here the present status and requirements on precision calculations, possible ways forward and novel methods, to match the experimental accuracies expected at the FCC-ee. We conclude that the challenge can be tackled by a distributed collaborative effort in academic institutions around the world, provided sufficient support, which is estimated to about 500 man-years over the next 20 years.
152 - Roberto Tenchini 2014
The prospects for electroweak precision measurements at the Future Circular Collider with electron-positron beams (FCC-ee) are discussed. The Z mass and width, as well as the value of the electroweak mixing angle, can be measured with very high preci sion at the Z pole thanks to an instantaneous luminosity five to six order of magnitudes larger than LEP. At centre-of-mass energies around 160 GeV, corresponding to the WW production threshold, the W mass can be determined very precisely with high-statistics cross section measurements at several energy points. Similarly, a very precise determination of the top mass can be provided by an energy scan at the $mathrm{t bar t}$ production threshold, around 350 GeV.
The Higgs bosons and the top quark decay into rich and diverse final states, containing both light and heavy quarks, gluons, photons as well as W and Z bosons. The precise identification and reconstruction of these final states at the FCC-ee relies o n the capability of the detector to provide excellent flavour tagging, jet energy and angular resolution, and global kinematic event reconstruction. Excellent flavour tagging performance requires low material vertex and tracking detectors, and advanced machine learning (ML) techniques as successfully employed in LHC experiments. In addition, the Z pole run will provide abundant samples of heavy flavour partons that can be used for calibration of the tagging algorithms. For the reconstruction of jets, leptons and missing energy, particle-flow algorithms are crucial to explore the full potential of the highly granular tracking and calorimeter systems, and give access to excellent energy-momentum resolution and precise identification of heavy bosons in their hadronic decays. This enables, among many other key elements, the reconstruction of Higgsstrahlung processes with leptonically and hadronically decaying Z bosons, and an almost background-free identification of top quark pair events. Exploiting the full available kinematic constraints together with exclusive jet clustering algorithms will allow for the optimisation of global event reconstruction with kinematic fitting techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا