Deeply virtual Compton scattering (DVCS) and timelike Compton scattering (TCS) leading twist amplitudes are intimately related thanks to their analytic properties as a function of $Q^2$. We exploit this feature to use Compton form factors previously extracted from available DVCS data and derive data-driven predictions for TCS observables to be measured in near future experiments. Our results quantitatively illustrate the complementarity of DVCS and TCS experiments.
Recently CMS and ATLAS announced that they had measured the Higgs boson parity. Here we note that their approach can determine this parity only under the additional assumption that this particle has a definite parity. If parity conservation is viol
ated in the Higgs sector, the parity of observed Higgs boson does not exist. The approach used in the mentioned experiments does not allow to observe such opportunity. In this sense titles of mentioned CMS and ATLAS publications are misleading.
As the numbers of submissions to conferences grow quickly, the task of assessing the quality of academic papers automatically, convincingly, and with high accuracy attracts increasing attention. We argue that studying interpretable dimensions of thes
e submissions could lead to scalable solutions. We extract a collection of writing features, and construct a suite of prediction tasks to assess the usefulness of these features in predicting citation counts and the publication of AI-related papers. Depending on the venues, the writing features can predict the conference vs. workshop appearance with F1 scores up to 60-90, sometimes even outperforming the content-based tf-idf features and RoBERTa. We show that the features describe writing style more than content. To further understand the results, we estimate the causal impact of the most indicative features. Our analysis on writing features provides a perspective to assessing and refining the writing of academic articles at scale.
The diagnostic age versus mass-to-light ratio diagram is often used in attempts to constrain the shape of the stellar initial mass function, and the stability and the potential longevity of extragalactic young to intermediate-age massive star cluster
s. Here, we explore the pitfalls associated with this approach and its potential for use with Galactic open clusters. We conclude that for an open cluster to survive for any significant fraction of a Hubble time (in the absence of substantial external perturbations), it is a necessary but not a sufficient condition to be located close to the predicted photometric evolutionary sequences for normal simple stellar populations.
Topical phenomena in high-energy physics related to collision experiments of heavy nuclei (Little Bang) and early universe cosmology (Big Bang) involve far-from-equilibrium dynamics described by quantum field theory. One example concerns the role of
plasma instabilities for the process of thermalization in heavy-ion collisions. The reheating of the early universe after inflation may exhibit rather similar phenomena following a tachyonic or parametric resonance instability. Certain universal aspects associated to nonthermal fixed points even quantitatively agree, and considering these phenomena from a common perspective can be fruitful.
Planck data has not found the smoking gun of non-Gaussianity that would have necessitated consideration of inflationary models beyond the simplest canonical single field scenarios. This raises the important question of what these results do imply for
more general models, and in particular, multi-field inflation. In this paper we revisit four ways in which two-field scenarios can behave differently from single field models; two-field slow-roll dynamics, curvaton-type behaviour, inflation ending on an inhomogeneous hypersurface and modulated reheating. We study the constraints that Planck data puts on these classes of behaviour, focusing on the latter two which have been least studied in the recent literature. We show that these latter classes are almost equivalent, and extend their previous analyses by accounting for arbitrary evolution of the isocurvature mode which, in particular, places important limits on the Gaussian curvature of the reheating hypersurface. In general, however, we find that Planck bispectrum results only constrain certain regions of parameter space, leading us to conclude that inflation sourced by more than one scalar field remains an important possibility.