ﻻ يوجد ملخص باللغة العربية
The memory wall bottleneck is a key challenge across many data-intensive applications. Multi-level FeFET-based embedded non-volatile memories are a promising solution for denser and more energy-efficient on-chip memory. However, reliable multi-level cell storage requires careful optimizations to minimize the design overhead costs. In this work, we investigate the interplay between FeFET device characteristics, programming schemes, and memory array architecture, and explore different design choices to optimize performance, energy, area, and accuracy metrics for critical data-intensive workloads. From our cross-stack design exploration, we find that we can store DNN weights and social network graphs at a density of over 8MB/mm^2 and sub-2ns read access latency without loss in application accuracy.
In this work, we theoretically and experimentally investigate the working principle and non-volatile memory (NVM) functionality of 2D $alpha$-In$_2$Se$_3$ based ferroelectric-semiconductor-metal-junction (FeSMJ). First, we analyze the semiconducting
DNA sequencing is the physical/biochemical process of identifying the location of the four bases (Adenine, Guanine, Cytosine, Thymine) in a DNA strand. As semiconductor technology revolutionized computing, modern DNA sequencing technology (termed Nex
Flat combining (FC) is a synchronization paradigm in which a single thread, holding a global lock, collects requests by multiple threads for accessing a concurrent data structure and applies their combined requests to it. Although FC is sequential, i
Recent experiments on layered {alpha}-In2Se3 have confirmed its room-temperature ferroelectricity under ambient condition. This observation renders {alpha}-In2Se3 an excellent platform for developing two-dimensional (2D) layered-material based electr
SLAM has matured significantly over the past few years, and is beginning to appear in serious commercial products. While new SLAM systems are being proposed at every conference, evaluation is often restricted to qualitative visualizations or accuracy