Optimizing Partial Power Processing for Second-Use Battery Energy Storage Systems


الملخص بالإنكليزية

Repurposing automotive batteries to second-use battery energy storage systems (2-BESS) may have environmental and economic benefits. The challenge with second-use batteries is the uncertainty and diversity of the expected packs in terms of their chemistry, capacity and remaining useful life. This paper introduces a new strategy to optimize 2-BESS performance despite the diversity or heterogeneity of individual batteries while reducing the cost of power conversion. In this paper, the statistical distribution of the power heterogeneity in the supply of batteries is considered when optimizing the choice of power converters and designing the power flow within the battery energy storage system (BESS) to maximize battery utilization. By leveraging a new lite-sparse hierarchical partial power processing (LS-HiPPP) approach, we show a hierarchy in partial power processing (PPP) partitions power converters to a) significantly reduce converter ratings, b) process less power to achieve high system efficiency with lower cost (lower efficiency) converters, and c) take advantage of economies of scale by requiring only a minimal number of sets of identical converters. The results demonstrate that LS-HiPPP architectures offer the best tradeoff between battery utilization and converter cost and had higher system efficiency than conventional partial power processing (C-PPP) in all cases.

تحميل البحث