MIMIR: Deep Regression for Automated Analysis of UK Biobank Body MRI


الملخص بالإنكليزية

UK Biobank (UKB) conducts large-scale examinations of more than half a million volunteers, collecting health-related information on genetics, lifestyle, blood biochemistry, and more. Medical imaging of 100,000 subjects, with 70,000 follow-up sessions, enables measurements of organs, muscle, and body composition. With up to 170,000 mounting MR images, various methodologies are accordingly engaged in large-scale image analysis. This work presents an experimental inference engine that can automatically predict a comprehensive profile of subject metadata from UKB neck-to-knee body MRI. It was evaluated in cross-validation for baseline characteristics such as age, height, weight, and sex, but also measurements of body composition, organ volumes, and abstract properties like grip strength, pulse rate, and type 2 diabetic status. It predicted subsequently released test data covering twelve body composition metrics with a 3% median error. The proposed system can automatically analyze one thousand subjects within ten minutes, providing individual confidence intervals. The underlying methodology utilizes convolutional neural networks for image-based mean-variance regression on two-dimensional representations of the MRI data. This work aims to make the proposed system available for free to researchers, who can use it to obtain fast and fully-automated estimates of 72 different measurements immediately upon release of new UKB image data.

تحميل البحث