ترغب بنشر مسار تعليمي؟ اضغط هنا

Bitcoins Crypto Flow Network

197   0   0.0 ( 0 )
 نشر من قبل Yoshi Fujiwara
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

How crypto flows among Bitcoin users is an important question for understanding the structure and dynamics of the cryptoasset at a global scale. We compiled all the blockchain data of Bitcoin from its genesis to the year 2020, identified users from anonymous addresses of wallets, and constructed monthly snapshots of networks by focusing on regular users as big players. We apply the methods of bow-tie structure and Hodge decomposition in order to locate the users in the upstream, downstream, and core of the entire crypto flow. Additionally, we reveal principal components hidden in the flow by using non-negative matrix factorization, which we interpret as a probabilistic model. We show that the model is equivalent to a probabilistic latent semantic analysis in natural language processing, enabling us to estimate the number of such hidden components. Moreover, we find that the bow-tie structure and the principal components are quite stable among those big players. This study can be a solid basis on which one can further investigate the temporal change of crypto flow, entry and exit of big players, and so forth.



قيم البحث

اقرأ أيضاً

57 - Hideaki Aoyama 2021
XRP is a modern crypto-asset (crypto-currency) developed by Ripple Labs, which has been increasing its financial presence. We study its transaction history available as ledger data. An analysis of its basic statistics, correlations, and network prope rties are presented. Motivated by the behavior of some nodes with histories of large transactions, we propose a new index: the ``Flow Index. The Flow Index is a pair of indices suitable for characterizing transaction frequencies as a source and destination of a node. Using this Flow Index, we study the global structure of the XRP network and construct bow-tie/walnut structure.
In this study, we investigate the flow of money among bank accounts possessed by firms in a region by employing an exhaustive list of all the bank transfers in a regional bank in Japan, to clarify how the network of money flow is related to the econo mic activities of the firms. The network statistics and structures are examined and shown to be similar to those of a nationwide production network. Specifically, the bowtie analysis indicates what we refer to as a walnut structure with core and upstream/downstream components. To quantify the location of an individual account in the network, we used the Hodge decomposition method and found that the Hodge potential of the account has a significant correlation to its position in the bowtie structure as well as to its net flow of incoming and outgoing money and links, namely the net demand/supply of individual accounts. In addition, we used non-negative matrix factorization to identify important factors underlying the entire flow of money; it can be interpreted that these factors are associated with regional economic activities.One factor has a feature whereby the remittance source is localized to the largest city in the region, while the destination is scattered. The other factors correspond to the economic activities specific to different local places.This study serves as a basis for further investigation on the relationship between money flow and economic activities of firms.
The arisen of Bitcoin has led to much enthusiasm for blockchain research and block mining, and the extensive existence of mining pools helps its participants (i.e., miners) gain reward more frequently. Recently, the mining pools are proved to be vuln erable for several possible attacks, and pool block withholding attack is one of them: one strategic pool manager sends some of her miners to other pools and these miners pretend to work on the puzzles but actually do nothing. And these miners still get reward since the pool manager can not recognize these malicious miners. In this work, we revisit the game-theoretic model for pool block withholding attacks and propose a revised approach to reallocate the reward to the miners. Fortunately, in the new model, the pool managers have strong incentive to not launch such attacks. We show that for any number of mining pools, no-pool-attacks is always a Nash equilibrium. Moreover, with only two minority mining pools participating, no-pool-attacks is actually the unique Nash equilibrium.
Bitcoins Lightning Network (LN) is a scalability solution for Bitcoin allowing transactions to be issued with negligible fees and settled instantly at scale. In order to use LN, funds need to be locked in payment channels on the Bitcoin blockchain (L ayer-1) for subsequent use in LN (Layer-2). LN is comprised of many payment channels forming a payment channel network. LNs promise is that relatively few payment channels already enable anyone to efficiently, securely and privately route payments across the whole network. In this paper, we quantify the structural properties of LN and argue that LNs current topological properties can be ameliorated in order to improve the security of LN, enabling it to reach its true potential.
Over the last two decades, we have seen a dramatic improvement in the efficiency of conflict-driven clause-learning Boolean satisfiability (CDCL SAT) solvers on industrial problems from a variety of domains. The availability of such powerful general- purpose search tools as SAT solvers has led many researchers to propose SAT-based methods for cryptanalysis, including techniques for finding collisions in hash functions and breaking symmetric encryption schemes. Most of the previously proposed SAT-based cryptanalysis approaches are blackbox techniques, in the sense that the cryptanalysis problem is encoded as a SAT instance and then a CDCL SAT solver is invoked to solve the said instance. A weakness of this approach is that the encoding thus generated may be too large for any modern solver to solve efficiently. Perhaps a more important weakness of this approach is that the solver is in no way specialized or tuned to solve the given instance. To address these issues, we propose an approach called CDCL(Crypto) (inspired by the CDCL(T) paradigm in Satisfiability Modulo Theory solvers) to tailor the internal subroutines of the CDCL SAT solver with domain-specific knowledge about cryptographic primitives. Specifically, we extend the propagation and conflict analysis subroutines of CDCL solvers with specialized codes that have knowledge about the cryptographic primitive being analyzed by the solver. We demonstrate the power of this approach in the differential path and algebraic fault analysis of hash functions. Our initial results are very encouraging and reinforce the notion that this approach is a significant improvement over blackbox SAT-based cryptanalysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا