ﻻ يوجد ملخص باللغة العربية
We study mean-field variational Bayesian inference using the TAP approach, for Z2-synchronization as a prototypical example of a high-dimensional Bayesian model. We show that for any signal strength $lambda > 1$ (the weak-recovery threshold), there exists a unique local minimizer of the TAP free energy functional near the mean of the Bayes posterior law. Furthermore, the TAP free energy in a local neighborhood of this minimizer is strongly convex. Consequently, a natural-gradient/mirror-descent algorithm achieves linear convergence to this minimizer from a local initialization, which may be obtained by a finite number of iterates of Approximate Message Passing (AMP). This provides a rigorous foundation for variational inference in high dimensions via minimization of the TAP free energy. We also analyze the finite-sample convergence of AMP, showing that AMP is asymptotically stable at the TAP minimizer for any $lambda > 1$, and is linearly convergent to this minimizer from a spectral initialization for sufficiently large $lambda$. Such a guarantee is stronger than results obtainable by state evolution analyses, which only describe a fixed number of AMP iterations in the infinite-sample limit. Our proofs combine the Kac-Rice formula and Sudakov-Fernique Gaussian comparison inequality to analyze the complexity of critical points that satisfy strong convexity and stability conditions within their local neighborhoods.
The cavity and TAP equations are high-dimensional systems of nonlinear equations of the local magnetization in the Sherrington-Kirkpatrick model. In the seminal work [Comm. Math. Phys., 325(1):333-366, 2014], Bolthausen introduced an iterative scheme
We consider the mixed $p$-spin mean-field spin glass model with Ising spins and investigate its free energy in the spirit of the TAP approach, named after Thouless, Anderson, and Palmer. More precisely, we define and compute the generalized TAP corre
In a recent paper [14], we developed the generalized TAP approach for mixed $p$-spin models with Ising spins at positive temperature. Here we extend these results in two directions. We find a simplified representation for the energy of the generalize
We review various characterizations of uniform convexity and smoothness on norm balls in finite-dimensional spaces and connect results stemming from the geometry of Banach spaces with textit{scaling inequalities} used in analysing the convergence of
We provide a theoretical treatment of over-specified Gaussian mixtures of experts with covariate-free gating networks. We establish the convergence rates of the maximum likelihood estimation (MLE) for these models. Our proof technique is based on a n