ﻻ يوجد ملخص باللغة العربية
We consider the critical points (equilibria) of a planar potential generated by $n$ Newtonian point masses augmented with a quadratic term (such as arises from a centrifugal effect). Particular cases of this problem have been considered previously in studies of the circular restricted $n$-body problem. We show that the number of equilibria is finite for a generic set of parameters, and we establish estimates for the number of equilibria. We prove that the number of equilibria is bounded below by $n+1$, and we provide examples to show that this lower bound is sharp. We prove an upper bound on the number of equilibria that grows exponentially in $n$. In order to establish a lower bound on the maximum number of equilibria, we analyze a class of examples, referred to as ``ring configurations, consisting of $n-1$ equal masses positioned at vertices of a regular polygon with an additional mass located at the center. Previous numerical observations indicate that these configurations can produce as many as $5n-5$ equilibria. We verify analytically that the ring configuration has at least $5n-5$ equilibria when the central mass is sufficiently small. We conjecture that the maximum number of equilibria grows linearly with the number of point masses. We also discuss some mathematical similarities to other equilibrium problems in mathematical physics, namely, Maxwells problem from electrostatics and the image counting problem from gravitational lensing.
We consider the spatial central force problem with a real analytic potential. We prove that for all analytic potentials, but the Keplerian and the Harmonic ones, the Hamiltonian fulfills a nondegeneracy property needed for the applicability of Nekhor
The goal of this paper is to investigate the normal and tangential forces acting at the point of contact between a horizontal surface and a rolling ball actuated by internal point masses moving in the balls frame of reference. The normal force and st
We study the first Hilbert coefficient (after the multiplicity) $e_1$ of a local ring $(A,m). $ Under various circumstances, it is also called the {bf Chern number} of the local ring $A.$ Starting from the work of D.G. Northcott in the 60s, several r
The shaking force balancing is a well-known problem in the design of high-speed robotic systems because the variable dynamic loads cause noises, wear and fatigue of mechanical structures. Different solutions, for full or partial shaking force balanci
Recent tokamak experiments employing off-axis, non-inductive current drive have found that a large central current hole can be produced. The current density is measured to be approximately zero in this region, though in principle there was sufficient