ﻻ يوجد ملخص باللغة العربية
Quantum imaging with undetected photons (QIUP) is a unique method of image acquisition where the photons illuminating the object are not detected. This method relies on quantum interference and spatial correlations between the twin photons to form an image. Here we present a detailed study of the resolution limits of position correlation enabled QIUP. We establish a quantitative relation between the spatial resolution and the twin photon position correlation in the spontaneous parametric down-conversion process (SPDC). Furthermore, we also quantitatively establish the roles that the wavelength of the undetected illumination field and the wavelength of the detected field play in the resolution. Like ghost imaging and unlike conventional imaging, the resolution limit imposed by the spatial correlation between twin photons in QIUP cannot be further improved by conventional optical techniques.
Quantum imaging with undetected photons (QIUP) is a unique imaging technique that does not require the detection of the light used for illuminating the object. The technique requires a correlated pair of photons. In the existing implementations of QI
Quantum imaging with undetected photons is a recently introduced technique that goes significantly beyond what was previously possible. In this technique, images are formed without detecting the light that interacted with the object that is imaged. G
Quantum imaging with undetected photons (QIUP) has recently emerged as a new powerful imaging tool. Exploiting the spatial entanglement of photon pairs, it allows decoupling of the sensing and detection wavelengths, facilitating imaging in otherwise
Holography exploits the interference of light fields to obtain a systematic reconstruction of the light fields wavefronts. Classical holography techniques have been very successful in diverse areas such as microscopy, manufacturing technology, and ba
We propose a novel quantum diffraction imaging technique whereby one photon of an entangled pair is diffracted off a sample and detected in coincidence with its twin. The image is obtained by scanning the photon that did not interact with matter. We