ترغب بنشر مسار تعليمي؟ اضغط هنا

A simple analog of black hole information paradox in quantum Hall interfaces

91   0   0.0 ( 0 )
 نشر من قبل Kwok Wai Ma
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The black hole information paradox has been hotly debated for the last few decades, without full resolution. This makes it desirable to find analogs of this paradox in simple and experimentally accessible systems, whose resolutions may shed light on this long-standing and fundamental problem. Here we identify and resolve an apparent information paradox in a quantum Hall interface between the Halperin-331 and Pfaffian states. Information carried by pseudospin degree of freedom of the Abelian 331 quasiparticles gets scrambled when they cross the interface to enter non-Abelian Pfaffian state, and becomes inaccessible to local measurements; in this sense the Pfaffian region is an analog of black hole interior while the interface plays a role similar to its horizon. We demonstrate that the lost information gets recovered once the black hole evaporates and the quasiparticles return to the 331 region, albeit in a highly entangled form. Such recovery is quantified by the Page curve of the entropy carried by these quasiparticles, which are analogs of Hawking radiation.



قيم البحث

اقرأ أيضاً

A quantum Hall (QH) interface is different from an ordinary QH edge, as the latter has its location determined by the confining potential, while the former can be unpinned and behave like a free string. In this paper, we demonstrate this difference b y studying three different interfaces formed by (i) the Laughlin state and the vacuum, (ii) the Pfaffian state and the vacuum, and (iii) the Pfaffian and the anti-Pfaffian states. We find that string-like interfaces propagating freely in the QH system lead to very different dynamical properties from edges. This qualitative difference gives rise to fascinating new physics and suggests a new direction in future research on QH physics. We also discuss briefly possible analogies between QH interfaces and concepts in string theory.
An asymmetric triangular potential well provides the simplest model for the confinement of mobile electrons at the interface between two insulating oxides, such as LaAlO_3 and SrTiO_3 (LAO/STO). These electrons have been recently shown to exhibit a l arge spin-orbit coupling of the Rashba type, i.e., linear in the in-plane momentum. In this paper we study the intrinsic spin Hall effect due to Rashba coupling in an asymmetric triangular potential well. Besides splitting each subband into two branches of opposite helicity, the spin-orbit interaction causes the wave function in the direction perpendicular to the plane of the quantum well (the z direction) to depend on the in-plane wave vector k. In contrast to the extreme asymmetric case, i.e., the wedge-shaped quantum well, for which the intrinsic spin Hall effect vanishes due to vertex corrections, we find that the asymmetric well supports a non-vanishing intrinsic spin Hall conductivity, which increases in magnitude as the well becomes more symmetric. The spin Hall conductivity is found to be proportional to the square of the spin-orbit coupling constant and, in the limit of low carrier density, depends only on the effective mass renormalization associated with the k-dependence of the wave functions in the z direction. Its origin lies in the non-vanishing matrix elements of the spin current between subbands corresponding to different states of quantized motion perpendicular to the plane of the well.
88 - H. Nikolic 2018
By entangling soft massless particles one can create an arbitrarily large amount of entanglement entropy that carries an arbitrarily small amount of energy. Dropping this entropy into the black hole (b.h.) one can increase the b.h. entropy by an amou nt that violates Bekenstein bound or any other reasonable bound, leading to a version of b.h. information paradox that does not involve Hawking radiation. Among many proposed solutions of the standard b.h. information paradox with Hawking radiation, only a few can also resolve this version without the Hawking radiation. The assumption that bo
We observe fractional quantum Hall effect (FQHE) at the even-denominator Landau level filling factor $ u=1/2$ in two-dimensional hole systems confined to GaAs quantum wells of width 30 to 50 nm and having bilayer-like charge distributions. The $ u=1/ 2$ FQHE is stable when the charge distribution is symmetric and only in a range of intermediate densities, qualitatively similar to what is seen in two-dimensional electron systems confined to approximately twice wider GaAs quantum wells. Despite the complexity of the hole Landau level structure, originating from the coexistence and mixing of the heavy- and light-hole states, we find the hole $ u=1/2$ FQHE to be consistent with a two-component, Halperin-Laughlin ($Psi_{331}$) state.
We study spin wave relaxation in quantum Hall ferromagnet regimes. Spin-orbit coupling is considered as a factor determining spin nonconservation, and external random potential as a cause of energy dissipation making spin-flip processes irreversible. We compare this relaxation mechanism with other relaxation channels existing in a quantum Hall ferromagnet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا