ﻻ يوجد ملخص باللغة العربية
The black hole information paradox has been hotly debated for the last few decades, without full resolution. This makes it desirable to find analogs of this paradox in simple and experimentally accessible systems, whose resolutions may shed light on this long-standing and fundamental problem. Here we identify and resolve an apparent information paradox in a quantum Hall interface between the Halperin-331 and Pfaffian states. Information carried by pseudospin degree of freedom of the Abelian 331 quasiparticles gets scrambled when they cross the interface to enter non-Abelian Pfaffian state, and becomes inaccessible to local measurements; in this sense the Pfaffian region is an analog of black hole interior while the interface plays a role similar to its horizon. We demonstrate that the lost information gets recovered once the black hole evaporates and the quasiparticles return to the 331 region, albeit in a highly entangled form. Such recovery is quantified by the Page curve of the entropy carried by these quasiparticles, which are analogs of Hawking radiation.
A quantum Hall (QH) interface is different from an ordinary QH edge, as the latter has its location determined by the confining potential, while the former can be unpinned and behave like a free string. In this paper, we demonstrate this difference b
An asymmetric triangular potential well provides the simplest model for the confinement of mobile electrons at the interface between two insulating oxides, such as LaAlO_3 and SrTiO_3 (LAO/STO). These electrons have been recently shown to exhibit a l
By entangling soft massless particles one can create an arbitrarily large amount of entanglement entropy that carries an arbitrarily small amount of energy. Dropping this entropy into the black hole (b.h.) one can increase the b.h. entropy by an amou
We observe fractional quantum Hall effect (FQHE) at the even-denominator Landau level filling factor $ u=1/2$ in two-dimensional hole systems confined to GaAs quantum wells of width 30 to 50 nm and having bilayer-like charge distributions. The $ u=1/
We study spin wave relaxation in quantum Hall ferromagnet regimes. Spin-orbit coupling is considered as a factor determining spin nonconservation, and external random potential as a cause of energy dissipation making spin-flip processes irreversible.