We measure for the first time the duration of long-quantum path EUV high harmonics produced in xenon gas. The long-quantum path contribution to the high-harmonic signal was carefully controlled by employing a two-colour driving laser field and a high-harmonic spatial selection in the far field, over a range of $18-25,eV$ in photon energy. To characterise the temporal profile of long quantum path high harmonics, we performed a second order volume autocorrelation ($2-IVAC$) via two EUV photon double ionization in argon. Our results show the production and characterisation of a train of EUV pulses from the long-path with pulse duration as short as $1.4,fs$. This measurement demonstrates that the long-quantum path emission can have enough flux for performing non-linear EUV experiments, and that the long trajectories enable a pulse duration short enough to support measurements with a temporal resolution below $2,fs$.