ﻻ يوجد ملخص باللغة العربية
The weakly supervised sound event detection problem is the task of predicting the presence of sound events and their corresponding starting and ending points in a weakly labeled dataset. A weak dataset associates each training sample (a short recording) to one or more present sources. Networks that solely rely on convolutional and recurrent layers cannot directly relate multiple frames in a recording. Motivated by attention and graph neural networks, we introduce the concept of an affinity mixup to incorporate time-level similarities and make a connection between frames. This regularization technique mixes up features in different layers using an adaptive affinity matrix. Our proposed affinity mixup network improves over state-of-the-art techniques event-F1 scores by $8.2%$.
In this paper, a special decision surface for the weakly-supervised sound event detection (SED) and a disentangled feature (DF) for the multi-label problem in polyphonic SED are proposed. We approach SED as a multiple instance learning (MIL) problem
Task 4 of the DCASE2018 challenge demonstrated that substantially more research is needed for a real-world application of sound event detection. Analyzing the challenge results it can be seen that most successful models are biased towards predicting
Access to large corpora with strongly labelled sound events is expensive and difficult in engineering applications. Much research turns to address the problem of how to detect both the types and the timestamps of sound events with weak labels that on
This paper presents DCASE 2018 task 4. The task evaluates systems for the large-scale detection of sound events using weakly labeled data (without time boundaries). The target of the systems is to provide not only the event class but also the event t
Sound event detection is an important facet of audio tagging that aims to identify sounds of interest and define both the sound category and time boundaries for each sound event in a continuous recording. With advances in deep neural networks, there