ﻻ يوجد ملخص باللغة العربية
A fundamental challenge in materials science pertains to elucidating the relationship between stoichiometry, stability, structure, and property. Recent advances have shown that machine learning can be used to learn such relationships, allowing the stability and functional properties of materials to be accurately predicted. However, most of these approaches use atomic coordinates as input and are thus bottlenecked by crystal structure identification when investigating novel materials. Our approach solves this bottleneck by coarse-graining the infinite search space of atomic coordinates into a combinatorially enumerable search space. The key idea is to use Wyckoff representations -- coordinate-free sets of symmetry-related positions in a crystal -- as the input to a machine learning model. Our model demonstrates exceptionally high precision in discovering new stable materials, identifying 1,558 materials that lie below the known convex hull of previously calculated materials from just 5,675 ab-initio calculations. Our approach opens up fundamental advances in computational materials discovery.
Assessing the synthesizability of inorganic materials is a grand challenge for accelerating their discovery using computations. Synthesis of a material is a complex process that depends not only on its thermodynamic stability with respect to others,
We investigate the spatial coarse-graining of interactions in host-guest systems within the framework of the recently proposed Interacting Pair Approximation (IPA). Basically, the IPA method derives local effective interactions from the knowledge of
Machine learning technologies are expected to be great tools for scientific discoveries. In particular, materials development (which has brought a lot of innovation by finding new and better functional materials) is one of the most attractive scienti
We study the coarse-graining approach to derive a generator for the evolution of an open quantum system over a finite time interval. The approach does not require a secular approximation but nevertheless generally leads to a Lindblad-Gorini-Kossakows
We investigate the coarse-graining of host-guest systems under the perspective of the local distribution of pore occupancies, along with the physical meaning and actual computability of the coarse-interaction terms. We show that the widely accepted a