ﻻ يوجد ملخص باللغة العربية
Tang and Ding [IEEE IT 67 (2021) 244-254] studied the class of narrow-sense BCH codes $mathcal{C}_{(q,q+1,4,1)}$ and their dual codes with $q=2^m$ and established that the codewords of the minimum (or the second minimum) weight in these codes support infinite families of 4-designs or 3-designs. Motivated by this, we further investigate the codewords of the next adjacent weight in such codes and discover more infinite classes of $t$-designs with $t=3,4$. In particular, we prove that the codewords of weight $7$ in $mathcal{C}_{(q,q+1,4,1)}$ support $4$-designs when $m geqslant 5$ is odd and $3$-designs when $m geqslant 4$ is even, which provide infinite classes of simple $t$-designs with new parameters. Another significant class of $t$-designs we produce in this paper has supplementary designs with parameters 4-$(2^{2s+1}+ 1,5,5)$; these designs have the smallest index among all the known simple 4-$(q+1,5,lambda)$ designs derived from codes for prime powers $q$; and they are further proved to be isomorphic to the 4-designs admitting the projective general linear group PGL$(2,2^{2s+1})$ as automorphism group constructed by Alltop in 1969.
This paper is concerned with the affine-invariant ternary codes which are defined by Hermitian functions. We compute the incidence matrices of 2-designs that are supported by the minimum weight codewords of these ternary codes. The linear codes gener
We classify 8-divisible binary linear codes with minimum distance 24 and small length. As an application we consider the codes associated to nodal sextics with 65 ordinary double points.
In this note, we provide a description of the elements of minimum rank of a generalized Gabidulin code in terms of Grassmann coordinates. As a consequence, a characterization of linearized polynomials of rank at most $n-k$ is obtained, as well as par
Maximum distance separable (MDS) codes are very important in both theory and practice. There is a classical construction of a family of $[2^m+1, 2u-1, 2^m-2u+3]$ MDS codes for $1 leq u leq 2^{m-1}$, which are cyclic, reversible and BCH codes over $ma
We study tight projective 2-designs in three different settings. In the complex setting, Zauners conjecture predicts the existence of a tight projective 2-design in every dimension. Pandey, Paulsen, Prakash, and Rahaman recently proposed an approach