ﻻ يوجد ملخص باللغة العربية
The TARK conference (Theoretical Aspects of Rationality and Knowledge) is a biannual conference that aims to bring together researchers from a wide variety of fields, including computer science, artificial intelligence, game theory, decision theory, philosophy, logic, linguistics, and cognitive science. Its goal is to further our understanding of interdisciplinary issues involving reasoning about rationality and knowledge. Topics of interest include, but are not limited to, semantic models for knowledge, belief, awareness and uncertainty, bounded rationality and resource-bounded reasoning, commonsense epistemic reasoning, epistemic logic, epistemic game theory, knowledge and action, applications of reasoning about knowledge and other mental states, belief revision, and foundations of multi-agent systems. These proceedings contain the papers that have been accepted for presentation at the Eighteenth Conference on Theoretical Aspects of Rationality and Knowledge (TARK 2021), held between June 25 and June 27, 2021, at Tsinghua University at Beijing, China.
Driven by recent successes in two-player, zero-sum game solving and playing, artificial intelligence work on games has increasingly focused on algorithms that produce equilibrium-based strategies. However, this approach has been less effective at pro
Since the first conference held in Marseille in 1982, ICLP has been the premier international event for presenting research in logic programming. Contributions are sought in all areas of logic programming, including but not restricted to: Foundatio
ICLP is the premier international event for presenting research in logic programming. Contributions to ICLP 2021 were sought in all areas of logic programming, including but not limited to: Foundations: Semantics, Formalisms, Nonmonotonic reasoni
Since the first conference held in Marseille in 1982, ICLP has been the premier international event for presenting research in logic programming. Contributions are solicited in all areas of logic programming and related areas, including but not restr
The interplay between exploration and exploitation in competitive multi-agent learning is still far from being well understood. Motivated by this, we study smooth Q-learning, a prototypical learning model that explicitly captures the balance between