ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Signal Representation Using Complex Conjugate Pair Sums

116   0   0.0 ( 0 )
 نشر من قبل Satyanarayana Reddy Arikatla
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

This letter introduces a real valued summation known as Complex Conjugate Pair Sum (CCPS). The space spanned by CCPS and its one circular downshift is called {em Complex Conjugate Subspace (CCS)}. For a given positive integer $Ngeq3$, there exists $frac{varphi(N)}{2}$ CCPSs forming $frac{varphi(N)}{2}$ CCSs, where $varphi(N)$ is the Eulers totient function. We prove that these CCSs are mutually orthogonal and their direct sum form a $varphi(N)$ dimensional subspace $s_N$ of $mathbb{C}^N$. We propose that any signal of finite length $N$ is represented as a linear combination of elements from a special basis of $s_d$, for each divisor $d$ of $N$. This defines a new transform named as Complex Conjugate Periodic Transform (CCPT). Later, we compared CCPT with DFT (Discrete Fourier Transform) and RPT (Ramanujan Periodic Transform). It is shown that, using CCPT we can estimate the period, hidden periods and frequency information of a signal. Whereas, RPT does not provide the frequency information. For a complex valued input signal, CCPT offers computational benefit over DFT. A CCPT dictionary based method is proposed to extract non-divisor period information.



قيم البحث

اقرأ أيضاً

In this letter, we study a few properties of Complex Conjugate Pair Sums (CCPSs) and Complex Conjugate Subspaces (CCSs). Initially, we consider an LTI system whose impulse response is one period data of CCPS. For a given input x(n), we prove that the output of this system is equivalent to computing the first order derivative of x(n). Further, with some constraints on the impulse response, the system output is also equivalent to the second order derivative. With this, we show that a fine edge detection in an image can be achieved using CCPSs as impulse response over Ramanujan Sums (RSs). Later computation of projection for CCS is studied. Here the projection matrix has a circulant structure, which makes the computation of projections easier. Finally, we prove that CCS is shift-invariant and closed under the operation of circular cross-correlation.
In the field of graph signal processing (GSP), directed graphs present a particular challenge for the standard approaches of GSP to due to their asymmetric nature. The presence of negative- or complex-weight directed edges, a graphical structure used in fields such as neuroscience, critical infrastructure, and robot coordination, further complicates the issue. Recent results generalized the total variation of a graph signal to that of directed variation as a motivating principle for developing a graphical Fourier transform (GFT). Here, we extend these techniques to concepts of signal variation appropriate for indefinite and complex-valued graphs and use them to define a GFT for these classes of graph. Simulation results on random graphs are presented, as well as a case study of a portion of the fruit fly connectome.
Because of its self-regularizing nature and uncertainty estimation, the Bayesian approach has achieved excellent recovery performance across a wide range of sparse signal recovery applications. However, most methods are based on the real-value signal model, with the complex-value signal model rarely considered. Typically, the complex signal model is adopted so that phase information can be utilized. Therefore, it is non-trivial to develop Bayesian models for the complex-value signal model. Motivated by the adaptive least absolute shrinkage and selection operator (LASSO) and the sparse Bayesian learning (SBL) framework, a hierarchical model with adaptive Laplace priors is proposed for applications of complex sparse signal recovery in this paper. The proposed hierarchical Bayesian framework is easy to extend for the case of multiple measurement vectors. Moreover, the space alternating principle is integrated into the algorithm to avoid using the matrix inverse operation. In the experimental section of this work, the proposed algorithm is concerned with both complex Gaussian random dictionaries and directions of arrival (DOA) estimations. The experimental results show that the proposed algorithm offers better sparsity recovery performance than the state-of-the-art methods for different types of complex signals.
In this paper, we introduce two types of real-valued sums known as Complex Conjugate Pair Sums (CCPSs) denoted as CCPS$^{(1)}$ and CCPS$^{(2)}$, and discuss a few of their properties. Using each type of CCPSs and their circular shifts, we construct t wo non-orthogonal Nested Periodic Matrices (NPMs). As NPMs are non-singular, this introduces two non-orthogonal transforms known as Complex Conjugate Periodic Transforms (CCPTs) denoted as CCPT$^{(1)}$ and CCPT$^{(2)}$. We propose another NPM, which uses both types of CCPSs such that its columns are mutually orthogonal, this transform is known as Orthogonal CCPT (OCCPT). After a brief study of a few OCCPT properties like periodicity, circular shift, etc., we present two different interpretations of it. Further, we propose a Decimation-In-Time (DIT) based fast computation algorithm for OCCPT (termed as FOCCPT), whenever the length of the signal is equal to $2^v, v{in} mathbb{N}$. The proposed sums and transforms are inspired by Ramanujan sums and Ramanujan Period Transform (RPT). Finally, we show that the period (both divisor and non-divisor) and frequency information of a signal can be estimated using the proposed transforms with a significant reduction in the computational complexity over Discrete Fourier Transform (DFT).
In this paper, we will describe a new factorization algorithm based on the continuous representation of Gauss sums, generalizable to orders j>2. Such an algorithm allows one, for the first time, to find all the factors of a number N in a single run w ithout precalculating the ratio N/l, where l are all the possible trial factors. Continuous truncated exponential sums turn out to be a powerful tool for distinguishing factors from non-factors (we also suggest, with regard to this topic, to read an interesting paper by S. Woelk et al. also published in this issue [Woelk, Feiler, Schleich, J. Mod. Opt. in press]) and factorizing different numbers at the same time. We will also describe two possible M-path optical interferometers, which can be used to experimentally realize this algorithm: a liquid crystal grating and a generalized symmetric Michelson interferometer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا