ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature and Pressure-driven Spin transitions and Piezochromism in a Mn-based Hybrid Perovskite

74   0   0.0 ( 0 )
 نشر من قبل Hrishit Banerjee
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hybrid perovskites have been at the forefront of condensed matter research particularly in context of device applications primarily in relation to applications in the field of solar cells. In this article, we demonstrate that several new functionalities may be added to the arsenal of hybrid perovskites, in terms of external stimuli driven spin transitions as well as piezochromism. As an example, we study Dimethylammonium Manganese Formate (DMAMnF), a hybrid perovskite investigated quite extensively experimentally. We show by employing first principles DFT+U calculations with the aid of ab initio molecular dynamics calculations that DMAMnF shows temperature and pressure driven spin transitions, from a LS S=1/2 to a HS S=5/2 state. This transition is accompanied by a hysteresis, and we find that this hysteresis and the transition temperature are quite close to room temperature, which is desirable for device applications particularly in memory, display, and switching devices. The operating pressure is a few GPa, which is easily achievable in standard laboratory settings. We find that the cooperative behaviour showing up as hysteresis accompanying the transition is driven primarily by elastic interactions, assisted by magnetic superexchange between Mn atoms. Last but not least we demonstrate that the spin transition is associated with piezochromism which is particularly important for sensor based applications.



قيم البحث

اقرأ أيضاً

We present theoretical investigations of pressure and temperature driven phase transitions in HgTe quantum wells grown on CdTe buffer. Using the 8-band textbf{k$cdot$p} Hamiltonian we calculate evolution of energy band structure at different quantum well width with hydrostatic pressure up to 20 kBar and temperature ranging up 300 K. In particular, we show that in addition to temperature, tuning of hydrostatic pressure allows to drive transitions between semimetal, band insulator and topological insulator phases. Our realistic band structure calculations reveal that the band inversion under hydrostatic pressure and temperature may be accompanied by non-local overlapping between conduction and valence bands. The pressure and temperature phase diagrams are presented.
We study lanthanum mononitride LaN by first-principles calculations. The commonly reported rock-salt structure of $Fmbar{3}m$ symmetry for rare-earth monopnictides is found dynamically unstable for LaN at zero temperature. Using density functional th eory and evolutionary crystal prediction, we discover a new, dynamically stable structure with $P1$ symmetry at 0 K. This $P1$-LaN exhibits spontaneous electric polarization. Our ab initio molecular dynamics simulations of finite-temperature phonon spectra further suggest that LaN will undergo ferroelectric and structural transitions from $P1$ to $Fmbar{3}m$ symmetry, when temperature is increased. Moreover, $P1$-LaN will transform to a tetragonal structure with $P4/nmm$ symmetry at a critical pressure $P=18$ GPa at 0 K. Electronic structures computed with an advanced hybrid functional show that the high-temperature rock-salt LaN can change from a trivial insulator to a strong topological insulator at $P sim 14$ GPa. Together, our results indicate that when $P=14 - 18$ GPa, LaN can show simultaneous temperature-induced structural, ferroelectric, and topological transitions. Lanthanum monopnictides thereby provide a rich playground for exploring novel phases and phase transitions driven by temperature and pressure.
We report artifact-free CH3NH3PbI3 optical constants extracted from ultra-smooth perovskite layers without air exposure and assign all the optical transitions in the visible/ultraviolet region unambiguously based on density functional theory (DFT) an alysis that assumes a simple pseudo-cubic crystal structure. From the self-consistent spectroscopic ellipsometry analysis of the ultra-smooth CH3NH3PbI3 layers, we find that the absorption coefficients of CH3NH3PbI3 (alpha = 3.8 x 10^4 cm-1 at 2.0 eV) are comparable to those of CuInGaSe2 and CdTe, and high alpha values reported in earlier studies are overestimated seriously by extensive surface roughness of CH3NH3PbI3 layers. The polarization-dependent DFT calculations show that CH3NH3+ interacts strongly with the PbI3- cage, modifying the CH3NH3PbI3 dielectric function in the visible region rather significantly. When the effect of CH3NH3+ on the optical transition is eliminated in the DFT calculation, CH3NH3PbI3 dielectric function deduced from DFT shows excellent agreement with the experimental result. As a result, distinct optical transitions observed at E0 (Eg) = 1.61 eV, E1 = 2.53 eV, and E2 = 3.24 eV in CH3NH3PbI3 are attributed to the direct semiconductor-type transitions at the R, M, and X points in the pseudo-cubic Brillouin zone, respectively. We further perform the quantum efficiency (QE) analysis for a standard hybrid-perovskite solar cell incorporating a mesoporous TiO2 layer and demonstrate that the QE spectrum can be reproduced almost perfectly when the revised CH3NH3PbI3 optical constants are employed. Depth-resolved QE simulations confirm that Jsc is limited by the materials longer wavelength response and indicate the importance of optical confinement and long carrier diffusion lengths in hybrid perovskite solar cells.
MgGeO$_3$-perovskite is known to be a low-pressure analog of MgSiO$_3$-perovskite in many respects, but especially in regard to the post-perovskite transition. As such, investigation of spin state changes in Fe-bearing MgGeO$_3$ might help to clarify some aspects of this type of state change in Fe-bearing MgSiO$_3$. Using DFT+U calculations, we have investigated pressure induced spin state changes in Fe$^{2+}$ and Fe$^{3+}$ in MgGeO$_3$ perovskite and post-perovskite. Owing to the relatively larger atomic size of germanium compared to silicon, germanate phases have larger unit cell volume and inter-atomic distances than equivalent silicate phases at same pressures. As a result, all pressure induced state changes in iron occur at higher pressures in germanate phases than in the silicate ones, be it a spin state change or position change of (ferrous) iron in the perovskite cage. We showed that iron state transitions occur at particular average Fe-O bond-length irrespective of mineral composition (silicate or germanate) or functionals (LDA+U$_{sc}$ or GGA+U$_{sc}$). Ferrous iron substitution decreases the perovskite to post-perovskite (PPv) transition pressure while coupled ferric iron substitution increases it noticeably.
Hybrid organic-inorganic halide perovskites have shown remarkable optoelectronic properties (1-3), believed to originate from correlated motion of charge carriers and the polar lattice forming large polarons (4-7). Few experimental techniques are cap able of probing these correlations directly, requiring simultaneous sub-meV energy and femtosecond temporal resolution after absorption of a photon (8). Here we use transient multi-THz spectroscopy, sensitive to the internal motions of charges within the polaron, to temporally and energetically resolve the coherent coupling of charges to longitudinal optical phonons in single crystal CH3NH3PbI3 (MAPI). We observe room temperature quantum beats arising from the coherent displacement of charge from the coupled phonon cloud. Our measurements provide unambiguous evidence of the existence of polarons in MAPI.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا