ﻻ يوجد ملخص باللغة العربية
We develop a deep learning approach to extract ray directions at discrete locations by analyzing highly oscillatory wave fields. A deep neural network is trained on a set of local plane-wave fields to predict ray directions at discrete locations. The resulting deep neural network is then applied to a reduced-frequency Helmholtz solution to extract the directions, which are further incorporated into a ray-based interior-penalty discontinuous Galerkin (IPDG) method to solve the Helmholtz equations at higher frequencies. In this way, we observe no apparent pollution effects in the resulting Helmholtz solutions in inhomogeneous media. Our 2D and 3D numerical results show that the proposed scheme is very efficient and yields highly accurate solutions.
In this paper, we present a multiscale framework for solving the Helmholtz equation in heterogeneous media without scale separation and in the high frequency regime where the wavenumber $k$ can be large. The main innovation is that our methods achiev
At present, deep learning based methods are being employed to resolve the computational challenges of high-dimensional partial differential equations (PDEs). But the computation of the high order derivatives of neural networks is costly, and high ord
This paper proposes a plane wave activation based neural network (PWNN) for solving Helmholtz equation, the basic partial differential equation to represent wave propagation, e.g. acoustic wave, electromagnetic wave, and seismic wave. Unlike using tr
In this paper, an efficient iterative method is proposed for solving multiple scattering problem in locally inhomogeneous media. The key idea is to enclose the inhomogeneity of the media by well separated artificial boundaries and then apply purely o
We introduce a new efficient algorithm for Helmholtz problems in perforated domains with the design of the scheme allowing for possibly large wavenumbers. Our method is based upon the Wavelet-based Edge Multiscale Finite Element Method (WEMsFEM) as p