ﻻ يوجد ملخص باللغة العربية
Some variants of the (block) Gauss-Seidel iteration for the solution of linear systems with $M$-matrices in (block) Hessenberg form are discussed. Comparison results for the asymptotic convergence rate of some regular splittings are derived: in particular, we prove that for a lower-Hessenberg M-matrix $rho(P_{GS})geq rho(P_S)geq rho(P_{AGS})$, where $P_{GS}, P_S, P_{AGS}$ are the iteration matrices of the Gauss-Seidel, staircase, and anti-Gauss-Seidel method. This is a result that does not seem to follow from classical comparison results, as these splittings are not directly comparable. It is shown that the concept of stair partitioning provides a powerful tool for the design of new variants that are suited for parallel computation.
We present fast numerical methods for computing the Hessenberg reduction of a unitary plus low-rank matrix $A=G+U V^H$, where $Gin mathbb C^{ntimes n}$ is a unitary matrix represented in some compressed format using $O(nk)$ parameters and $U$ and $V$
We develop two fast algorithms for Hessenberg reduction of a structured matrix $A = D + UV^H$ where $D$ is a real or unitary $n times n$ diagonal matrix and $U, V inmathbb{C}^{n times k}$. The proposed algorithm for the real case exploits a two--stag
In this paper we study the linear systems arising from discretized poroelasticity problems. We formulate one block preconditioner for the two-filed Biot model and several preconditioners for the classical three-filed Biot model under the unified rela
We analyze the the convergence behavior of block GMRES and characterize the phenomenon of stagnation which is then related to the behavior of the block FOM method. We generalize the block FOM method to generate well-defined approximations in the case
In this paper, we investigate the randomized algorithms for block matrix multiplication from random sampling perspective. Based on the A-optimal design criterion, the optimal sampling probabilities and sampling block sizes are obtained. To improve th