ترغب بنشر مسار تعليمي؟ اضغط هنا

Sublinear Time Hypergraph Sparsification via Cut and Edge Sampling Queries

216   0   0.0 ( 0 )
 نشر من قبل Yu Chen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The problem of sparsifying a graph or a hypergraph while approximately preserving its cut structure has been extensively studied and has many applications. In a seminal work, Benczur and Karger (1996) showed that given any $n$-vertex undirected weighted graph $G$ and a parameter $varepsilon in (0,1)$, there is a near-linear time algorithm that outputs a weighted subgraph $G$ of $G$ of size $tilde{O}(n/varepsilon^2)$ such that the weight of every cut in $G$ is preserved to within a $(1 pm varepsilon)$-factor in $G$. The graph $G$ is referred to as a {em $(1 pm varepsilon)$-approximate cut sparsifier} of $G$. Subsequent recent work has obtained a similar result for the more general problem of hypergraph cut sparsifiers. However, all known sparsification algorithms require $Omega(n + m)$ time where $n$ denotes the number of vertices and $m$ denotes the number of hyperedges in the hypergraph. Since $m$ can be exponentially large in $n$, a natural question is if it is possible to create a hypergraph cut sparsifier in time polynomial in $n$, {em independent of the number of edges}. We resolve this question in the affirmative, giving the first sublinear time algorithm for this problem, given appropriate query access to the hypergraph.



قيم البحث

اقرأ أيضاً

In the subgraph counting problem, we are given a input graph $G(V, E)$ and a target graph $H$; the goal is to estimate the number of occurrences of $H$ in $G$. Our focus here is on designing sublinear-time algorithms for approximately counting occurr ences of $H$ in $G$ in the setting where the algorithm is given query access to $G$. This problem has been studied in several recent papers which primarily focused on specific families of graphs $H$ such as triangles, cliques, and stars. However, not much is known about approximate counting of arbitrary graphs $H$. This is in sharp contrast to the closely related subgraph enumeration problem that has received significant attention in the database community as the database join problem. The AGM bound shows that the maximum number of occurrences of any arbitrary subgraph $H$ in a graph $G$ with $m$ edges is $O(m^{rho(H)})$, where $rho(H)$ is the fractional edge-cover of $H$, and enumeration algorithms with matching runtime are known for any $H$. We bridge this gap between subgraph counting and subgraph enumeration by designing a sublinear-time algorithm that can estimate the number of any arbitrary subgraph $H$ in $G$, denoted by $#H$, to within a $(1pm epsilon)$-approximation w.h.p. in $O(frac{m^{rho(H)}}{#H}) cdot poly(log{n},1/epsilon)$ time. Our algorithm is allowed the standard set of queries for general graphs, namely degree queries, pair queries and neighbor queries, plus an additional edge-sample query that returns an edge chosen uniformly at random. The performance of our algorithm matches those of Eden et.al. [FOCS 2015, STOC 2018] for counting triangles and cliques and extend them to all choices of subgraph $H$ under the additional assumption of edge-sample queries. We further show that our algorithm works for the more general database join size estimation problem and prove a matching lower bound for this problem.
We study the problem of approximating the eigenspectrum of a symmetric matrix $A in mathbb{R}^{n times n}$ with bounded entries (i.e., $|A|_{infty} leq 1$). We present a simple sublinear time algorithm that approximates all eigenvalues of $A$ up to a dditive error $pm epsilon n$ using those of a randomly sampled $tilde{O}(frac{1}{epsilon^4}) times tilde O(frac{1}{epsilon^4})$ principal submatrix. Our result can be viewed as a concentration bound on the full eigenspectrum of a random principal submatrix. It significantly extends existing work which shows concentration of just the spectral norm [Tro08]. It also extends work on sublinear time algorithms for testing the presence of large negative eigenvalues in the spectrum [BCJ20]. To complement our theoretical results, we provide numerical simulations, which demonstrate the effectiveness of our algorithm in approximating the eigenvalues of a wide range of matrices.
In this paper, we consider the problem of designing cut sparsifiers and sketches for directed graphs. To bypass known lower bounds, we allow the sparsifier/sketch to depend on the balance of the input graph, which smoothly interpolates between undire cted and directed graphs. We give nearly matching upper and lower bounds for both for-all (cf. Benczur and Karger, STOC 1996) and for-each (Andoni et al., ITCS 2016) cut sparsifiers/sketches as a function of cut balance, defined the maximum ratio of the cut value in the two directions of a directed graph (Ene et al., STOC 2016). We also show an interesting application of digraph sparsification via cut balance by using it to give a very short proof of a celebrated maximum flow result of Karger and Levine (STOC 2002).
We give a deterministic, nearly logarithmic-space algorithm for mild spectral sparsification of undirected graphs. Given a weighted, undirected graph $G$ on $n$ vertices described by a binary string of length $N$, an integer $kleq log n$, and an erro r parameter $epsilon > 0$, our algorithm runs in space $tilde{O}(klog (Ncdot w_{mathrm{max}}/w_{mathrm{min}}))$ where $w_{mathrm{max}}$ and $w_{mathrm{min}}$ are the maximum and minimum edge weights in $G$, and produces a weighted graph $H$ with $tilde{O}(n^{1+2/k}/epsilon^2)$ edges that spectrally approximates $G$, in the sense of Spielmen and Teng [ST04], up to an error of $epsilon$. Our algorithm is based on a new bounded-independence analysis of Spielman and Srivastavas effective resistance based edge sampling algorithm [SS08] and uses results from recent work on space-bounded Laplacian solvers [MRSV17]. In particular, we demonstrate an inherent tradeoff (via upper and lower bounds) between the amount of (bounded) independence used in the edge sampling algorithm, denoted by $k$ above, and the resulting sparsity that can be achieved.
Cuts in graphs are a fundamental object of study, and play a central role in the study of graph algorithms. The problem of sparsifying a graph while approximately preserving its cut structure has been extensively studied and has many applications. In a seminal work, Benczur and Karger (1996) showed that given any $n$-vertex undirected weighted graph $G$ and a parameter $varepsilon in (0,1)$, there is a near-linear time algorithm that outputs a weighted subgraph $G$ of $G$ of size $tilde{O}(n/varepsilon^2)$ such that the weight of every cut in $G$ is preserved to within a $(1 pm varepsilon)$-factor in $G$. The graph $G$ is referred to as a {em $(1 pm varepsilon)$-approximate cut sparsifier} of $G$. A natural question is if such cut-preserving sparsifiers also exist for hypergraphs. Kogan and Krauthgamer (2015) initiated a study of this question and showed that given any weighted hypergraph $H$ where the cardinality of each hyperedge is bounded by $r$, there is a polynomial-time algorithm to find a $(1 pm varepsilon)$-approximate cut sparsifier of $H$ of size $tilde{O}(frac{nr}{varepsilon^2})$. Since $r$ can be as large as $n$, in general, this gives a hypergraph cut sparsifier of size $tilde{O}(n^2/varepsilon^2)$, which is a factor $n$ larger than the Benczur-Karger bound for graphs. It has been an open question whether or not Benczur-Karger bound is achievable on hypergraphs. In this work, we resolve this question in the affirmative by giving a new polynomial-time algorithm for creating hypergraph sparsifiers of size $tilde{O}(n/varepsilon^2)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا