ﻻ يوجد ملخص باللغة العربية
The maximum matching problem in dynamic graphs subject to edge updates (insertions and deletions) has received much attention over the last few years; a multitude of approximation/time tradeoffs were obtained, improving upon the folklore algorithm, which maintains a maximal (and hence $2$-approximate) matching in $O(n)$ worst-case update time in $n$-node graphs. We present the first deterministic algorithm which outperforms the folklore algorithm in terms of {em both} approximation ratio and worst-case update time. Specifically, we give a $(2-Omega(1))$-approximate algorithm with $O(sqrt{n}sqrt[8]{m})=O(n^{3/4})$ worst-case update time in $n$-node, $m$-edge graphs. For sufficiently small constant $epsilon>0$, no deterministic $(2+epsilon)$-approximate algorithm with worst-case update time $O(n^{0.99})$ was known. Our second result is the first deterministic $(2+epsilon)$-approximate (weighted) matching algorithm with $O_epsilon(1)cdot O(sqrt[4]{m}) = O_epsilon(1)cdot O(sqrt{n})$ worst-case update time.
In fully dynamic graphs, we know how to maintain a 2-approximation of maximum matching extremely fast, that is, in polylogarithmic update time or better. In a sharp contrast and despite extensive studies, all known algorithms that maintain a $2-Omega
We study the maximum matching problem in the random-order semi-streaming setting. In this problem, the edges of an arbitrary $n$-vertex graph $G=(V, E)$ arrive in a stream one by one and in a random order. The goal is to have a single pass over the s
The Micali-Vazirani (MV) algorithm for maximum cardinality matching in general graphs, which was published in 1980 cite{MV}, remains to this day the most efficient known algorithm for the problem. This paper gives the first complete and correct pro
We introduce a weighted version of the ranking algorithm by Karp et al. (STOC 1990), and prove a competitive ratio of 0.6534 for the vertex-weighted online bipartite matching problem when online vertices arrive in random order. Our result shows that
Dynamic Connectivity is a fundamental algorithmic graph problem, motivated by a wide range of applications to social and communication networks and used as a building block in various other algorithms, such as the bi-connectivity and the dynamic mini