ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal Rate-Distortion-Perception Representations for Lossy Compression

159   0   0.0 ( 0 )
 نشر من قبل George Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In the context of lossy compression, Blau & Michaeli (2019) adopt a mathematical notion of perceptual quality and define the information rate-distortion-perception function, generalizing the classical rate-distortion tradeoff. We consider the notion of universal representations in which one may fix an encoder and vary the decoder to achieve any point within a collection of distortion and perception constraints. We prove that the corresponding information-theoretic universal rate-distortion-perception function is operationally achievable in an approximate sense. Under MSE distortion, we show that the entire distortion-perception tradeoff of a Gaussian source can be achieved by a single encoder of the same rate asymptotically. We then characterize the achievable distortion-perception region for a fixed representation in the case of arbitrary distributions, identify conditions under which the aforementioned results continue to hold approximately, and study the case when the rate is not fixed in advance. This motivates the study of practical constructions that are approximately universal across the RDP tradeoff, thereby alleviating the need to design a new encoder for each objective. We provide experimental results on MNIST and SVHN suggesting that on image compression tasks, the operational tradeoffs achieved by machine learning models with a fixed encoder suffer only a small penalty when compared to their variable encoder counterparts.



قيم البحث

اقرأ أيضاً

The rate-distortion-perception function (RDPF; Blau and Michaeli, 2019) has emerged as a useful tool for thinking about realism and distortion of reconstructions in lossy compression. Unlike the rate-distortion function, however, it is unknown whethe r encoders and decoders exist that achieve the rate suggested by the RDPF. Building on results by Li and El Gamal (2018), we show that the RDPF can indeed be achieved using stochastic, variable-length codes. For this class of codes, we also prove that the RDPF lower-bounds the achievable rate
Signal degradation is ubiquitous and computational restoration of degraded signal has been investigated for many years. Recently, it is reported that the capability of signal restoration is fundamentally limited by the perception-distortion tradeoff, i.e. the distortion and the perceptual difference between the restored signal and the ideal `original signal cannot be made both minimal simultaneously. Distortion corresponds to signal fidelity and perceptual difference corresponds to perceptual naturalness, both of which are important metrics in practice. Besides, there is another dimension worthy of consideration, namely the semantic quality or the utility for recognition purpose, of the restored signal. In this paper, we extend the previous perception-distortion tradeoff to the case of classification-distortion-perception (CDP) tradeoff, where we introduced the classification error rate of the restored signal in addition to distortion and perceptual difference. T
When training end-to-end learned models for lossy compression, one has to balance the rate and distortion losses. This is typically done by manually setting a tradeoff parameter $beta$, an approach called $beta$-VAE. Using this approach it is difficu lt to target a specific rate or distortion value, because the result can be very sensitive to $beta$, and the appropriate value for $beta$ depends on the model and problem setup. As a result, model comparison requires extensive per-model $beta$-tuning, and producing a whole rate-distortion curve (by varying $beta$) for each model to be compared. We argue that the constrained optimization method of Rezende and Viola, 2018 is a lot more appropriate for training lossy compression models because it allows us to obtain the best possible rate subject to a distortion constraint. This enables pointwise model comparisons, by training two models with the same distortion target and comparing their rate. We show that the method does manage to satisfy the constraint on a realistic image compression task, outperforms a constrained optimization method based on a hinge-loss, and is more practical to use for model selection than a $beta$-VAE.
Most data is automatically collected and only ever seen by algorithms. Yet, data compressors preserve perceptual fidelity rather than just the information needed by algorithms performing downstream tasks. In this paper, we characterize the bit-rate r equired to ensure high performance on all predictive tasks that are invariant under a set of transformations, such as data augmentations. Based on our theory, we design unsupervised objectives for training neural compressors. Using these objectives, we train a generic image compressor that achieves substantial rate savings (more than $1000times$ on ImageNet) compared to JPEG on 8 datasets, without decreasing downstream classification performance.
Motivated by the prevalent data science applications of processing and mining large-scale graph data such as social networks, web graphs, and biological networks, as well as the high I/O and communication costs of storing and transmitting such data, this paper investigates lossless compression of data appearing in the form of a labeled graph. A universal graph compression scheme is proposed, which does not depend on the underlying statistics/distribution of the graph model. For graphs generated by a stochastic block model, which is a widely used random graph model capturing the clustering effects in social networks, the proposed scheme achieves the optimal theoretical limit of lossless compression without the need to know edge probabilities, community labels, or the number of communities. The key ideas in establishing universality for stochastic block models include: 1) block decomposition of the adjacency matrix of the graph; 2) generalization of the Krichevsky-Trofimov probability assignment, which was initially designed for i.i.d. random processes. In four benchmark graph datasets (protein-to-protein interaction, LiveJournal friendship, Flickr, and YouTube), the compressed files from competing algorithms (including CSR, Ligra+, PNG image compressor, and Lempel-Ziv compressor for two-dimensional data) take 2.4 to 27 times the space needed by the proposed scheme.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا