ﻻ يوجد ملخص باللغة العربية
Collisions between interstellar gas clouds are potentially an important mechanism for triggering star formation. This is because they are able to rapidly generate large masses of dense gas. Observationally, cloud collisions are often identified in position-velocity (PV) space through bridging features between intensity peaks, usually of CO emission. Using a combination of hydrodynamical simulations, time-dependent chemistry, and radiative transfer, we produce synthetic molecular line observations of overlapping clouds that are genuinely colliding, and overlapping clouds that are just chance superpositions. Molecules tracing denser material than CO, such as NH$_3$ and HCN, reach peak intensity ratios of $0.5$ and $0.2$ with respect to CO in the `bridging feature region of PV space for genuinely colliding clouds. For overlapping clouds that are just chance superpositions, the peak NH$_3$ and HCN intensities are co-located with the CO intensity peaks. This represents a way of confirming cloud collisions observationally, and distinguishing them from chance alignments of unrelated material.
The dense cloud associated with W40, one of the nearby H II regions, has been studied in millimeter-wave molecular lines and in 1.2 mm continuum. Besides, 1280 MHz and 610 MHz interferometric observations have been done. The cloud has complex morphol
We present a comparative study of the size-line width relation for substructures within six molecular clouds in the Large Magellanic Cloud (LMC) mapped with the Atacama Large Millimeter/submillimeter Array (ALMA). Our sample extends our previous stud
Star formation is a fundamental process for galactic evolution. One issue over the last several decades has been determining whether star formation is induced by external triggers or is self-regulated in a closed system. The role of an external trigg
We have conducted a spectral line survey observation in the 3 mm band toward the low-metallicity dwarf galaxy IC10 with the 45 m radio telescope of Nobeyama Radio Observatory to explore its chemical composition at a molecular-cloud scale (~80 pc). Th
In previous contributions, we have presented an analytical model describing the evolution of molecular clouds (MCs) undergoing hierarchical gravitational contraction. The clouds evolution is characterized by an initial increase in its mass, density,