ﻻ يوجد ملخص باللغة العربية
We extend a recent argument of Kahn, Narayanan and Park (Proceedings of the AMS, to appear) about the threshold for the appearance of the square of a Hamilton cycle to other spanning structures. In particular, for any spanning graph, we give a sufficient condition under which we may determine its threshold. As an application, we find the threshold for a set of cyclically ordered copies of $C_4$ that span the entire vertex set, so that any two consecutive copies overlap in exactly one edge and all overlapping edges are disjoint. This answers a question of Frieze. We also determine the threshold for edge-overlapping spanning $K_r$-cycles.
We show that, in almost every $n$-vertex random directed graph process, a copy of every possible $n$-vertex oriented cycle will appear strictly before a directed Hamilton cycle does, except of course for the directed cycle itself. Furthermore, given
The bandwidth theorem [Mathematische Annalen, 343(1):175--205, 2009] states that any $n$-vertex graph $G$ with minimum degree $(frac{k-1}{k}+o(1))n$ contains all $n$-vertex $k$-colourable graphs $H$ with bounded maximum degree and bandwidth $o(n)$. I
Given an $n$ vertex graph whose edges have colored from one of $r$ colors $C={c_1,c_2,ldots,c_r}$, we define the Hamilton cycle color profile $hcp(G)$ to be the set of vectors $(m_1,m_2,ldots,m_r)in [0,n]^r$ such that there exists a Hamilton cycle th
We prove that the number of Hamilton cycles in the random graph G(n,p) is n!p^n(1+o(1))^n a.a.s., provided that pgeq (ln n+ln ln n+omega(1))/n. Furthermore, we prove the hitting-time version of this statement, showing that in the random graph process
We prove that for each $Dge 2$ there exists $c>0$ such that whenever $ble cbig(tfrac{n}{log n}big)^{1/D}$, in the $(1:b)$ Maker-Breaker game played on $E(K_n)$, Maker has a strategy to guarantee claiming a graph $G$ containing copies of all graphs $H