ترغب بنشر مسار تعليمي؟ اضغط هنا

The Ihara-zeta function and the spectrum of the join of two semi-regular bipartite graphs

197   0   0.0 ( 0 )
 نشر من قبل Li Xiaotong
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, using matrix techniques, we compute the Ihara-zeta function and the number of spanning trees of the join of two semi-regular bipartite graphs. Furthermore, we show that the spectrum and the zeta function of the join of two semi-regular bipartite graphs can determine each other.



قيم البحث

اقرأ أيضاً

103 - Xiaogang Liu , Zuhe Zhang 2012
The subdivision graph $mathcal{S}(G)$ of a graph $G$ is the graph obtained by inserting a new vertex into every edge of $G$. Let $G_1$ and $G_2$ be two vertex disjoint graphs. The emph{subdivision-vertex join} of $G_1$ and $G_2$, denoted by $G_1dot{v ee}G_2$, is the graph obtained from $mathcal{S}(G_1)$ and $G_2$ by joining every vertex of $V(G_1)$ with every vertex of $V(G_2)$. The emph{subdivision-edge join} of $G_1$ and $G_2$, denoted by $G_1underline{vee}G_2$, is the graph obtained from $mathcal{S}(G_1)$ and $G_2$ by joining every vertex of $I(G_1)$ with every vertex of $V(G_2)$, where $I(G_1)$ is the set of inserted vertices of $mathcal{S}(G_1)$. In this paper we determine the adjacency spectra, the Laplacian spectra and the signless Laplacian spectra of $G_1dot{vee}G_2$ (respectively, $G_1underline{vee}G_2$) for a regular graph $G_1$ and an arbitrary graph $G_2$, in terms of the corresponding spectra of $G_1$ and $G_2$. As applications, these results enable us to construct infinitely many pairs of cospectral graphs. We also give the number of the spanning trees and the Kirchhoff index of $G_1dot{vee}G_2$ (respectively, $G_1underline{vee}G_2$) for a regular graph $G_1$ and an arbitrary graph $G_2$.
109 - Frank Bauer , Jurgen Jost 2009
We study the spectrum of the normalized Laplace operator of a connected graph $Gamma$. As is well known, the smallest nontrivial eigenvalue measures how difficult it is to decompose $Gamma$ into two large pieces, whereas the largest eigenvalue contro ls how close $Gamma$ is to being bipartite. The smallest eigenvalue can be controlled by the Cheeger constant, and we establish a dual construction that controls the largest eigenvalue. Moreover, we find that the neighborhood graphs $Gamma[l]$ of order $lgeq2$ encode important spectral information about $Gamma$ itself which we systematically explore. In particular, the neighborhood graph method leads to new estimates for the smallest nontrivial eigenvalue that can improve the Cheeger inequality, as well as an explicit estimate for the largest eigenvalue from above and below. As applications of such spectral estimates, we provide a criterion for the synchronizability of coupled map lattices, and an estimate for the convergence rate of random walks on graphs.
Let $mathrm{rex}(n, F)$ denote the maximum number of edges in an $n$-vertex graph that is regular and does not contain $F$ as a subgraph. We give lower bounds on $mathrm{rex}(n, F)$, that are best possible up to a constant factor, when $F$ is one of $C_4$, $K_{2,t}$, $K_{3,3}$ or $K_{s,t}$ when $t>s!$.
304 - Leonid Golinskii 2020
Two method for computation of the spectra of certain infinite graphs are suggested. The first one can be viewed as a reversed Gram--Schmidt orthogonalization procedure. It relies heavily on the spectral theory of Jacobi matrices. The second method is related to the Schur complement for block matrices. A number of examples including infinite graphs with tails, chains of cycles and ladders are worked out in detail.
For hyperbolic Riemann surfaces of finite geometry, we study Selbergs zeta function and its relation to the relative scattering phase and the resonances of the Laplacian. As an application we show that the conjugacy class of a finitely generated, tor sion-free, discrete subgroup of SL(2,R) is determined by its trace spectrum up to finitely many possibilities, thus generalizing results of McKean and Mueller to groups which are not necessarily cofinite.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا