ترغب بنشر مسار تعليمي؟ اضغط هنا

LSEC: Large-scale spectral ensemble clustering

122   0   0.0 ( 0 )
 نشر من قبل Hongmin Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Ensemble clustering is a fundamental problem in the machine learning field, combining multiple base clusterings into a better clustering result. However, most of the existing methods are unsuitable for large-scale ensemble clustering tasks due to the efficiency bottleneck. In this paper, we propose a large-scale spectral ensemble clustering (LSEC) method to strike a good balance between efficiency and effectiveness. In LSEC, a large-scale spectral clustering based efficient ensemble generation framework is designed to generate various base clusterings within a low computational complexity. Then all based clustering are combined through a bipartite graph partition based consensus function into a better consensus clustering result. The LSEC method achieves a lower computational complexity than most existing ensemble clustering methods. Experiments conducted on ten large-scale datasets show the efficiency and effectiveness of the LSEC method. The MATLAB code of the proposed method and experimental datasets are available at https://github.com/Li- Hongmin/MyPaperWithCode.



قيم البحث

اقرأ أيضاً

Spectral clustering is one of the most popular clustering methods. However, how to balance the efficiency and effectiveness of the large-scale spectral clustering with limited computing resources has not been properly solved for a long time. In this paper, we propose a divide-and-conquer based large-scale spectral clustering method to strike a good balance between efficiency and effectiveness. In the proposed method, a divide-and-conquer based landmark selection algorithm and a novel approximate similarity matrix approach are designed to construct a sparse similarity matrix within extremely low cost. Then clustering results can be computed quickly through a bipartite graph partition process. The proposed method achieves the lower computational complexity than most existing large-scale spectral clustering. Experimental results on ten large-scale datasets have demonstrated the efficiency and effectiveness of the proposed methods. The MATLAB code of the proposed method and experimental datasets are available at https://github.com/Li-Hongmin/MyPaperWithCode.
In this work we study statistical properties of graph-based algorithms for multi-manifold clustering (MMC). In MMC the goal is to retrieve the multi-manifold structure underlying a given Euclidean data set when this one is assumed to be obtained by s ampling a distribution on a union of manifolds $mathcal{M} = mathcal{M}_1 cupdots cup mathcal{M}_N$ that may intersect with each other and that may have different dimensions. We investigate sufficient conditions that similarity graphs on data sets must satisfy in order for their corresponding graph Laplacians to capture the right geometric information to solve the MMC problem. Precisely, we provide high probability error bounds for the spectral approximation of a tensorized Laplacian on $mathcal{M}$ with a suitable graph Laplacian built from the observations; the recovered tensorized Laplacian contains all geometric information of all the individual underlying manifolds. We provide an example of a family of similarity graphs, which we call annular proximity graphs with angle constraints, satisfying these sufficient conditions. We contrast our family of graphs with other constructions in the literature based on the alignment of tangent planes. Extensive numerical experiments expand the insights that our theory provides on the MMC problem.
86 - Xiang Li , Ben Kao , Caihua Shan 2020
We study the problem of applying spectral clustering to cluster multi-scale data, which is data whose clusters are of various sizes and densities. Traditional spectral clustering techniques discover clusters by processing a similarity matrix that ref lects the proximity of objects. For multi-scale data, distance-based similarity is not effective because objects of a sparse cluster could be far apart while those of a dense cluster have to be sufficiently close. Following [16], we solve the problem of spectral clustering on multi-scale data by integrating the concept of objects reachability similarity with a given distance-based similarity to derive an objects coefficient matrix. We propose the algorithm CAST that applies trace Lasso to regularize the coefficient matrix. We prove that the resulting coefficient matrix has the grouping effect and that it exhibits sparsity. We show that these two characteristics imply very effective spectral clustering. We evaluate CAST and 10 other clustering methods on a wide range of datasets w.r.t. various measures. Experimental results show that CAST provides excellent performance and is highly robust across test cases of multi-scale data.
81 - Yan Ge , Haiping Lu , Pan Peng 2018
Clustering is fundamental for gaining insights from complex networks, and spectral clustering (SC) is a popular approach. Conventional SC focuses on second-order structures (e.g., edges connecting two nodes) without direct consideration of higher-ord er structures (e.g., triangles and cliques). This has motivated SC extensions that directly consider higher-order structures. However, both approaches are limited to considering a single order. This paper proposes a new Mixed-Order Spectral Clustering (MOSC) approach to model both second-order and third-order structures simultaneously, with two MOSC methods developed based on Graph Laplacian (GL) and Random Walks (RW). MOSC-GL combines edge and triangle adjacency matrices, with theoretical performance guarantee. MOSC-RW combines first-order and second-order random walks for a probabilistic interpretation. We automatically determine the mixing parameter based on cut criteria or triangle density, and construct new structure-aware error metrics for performance evaluation. Experiments on real-world networks show 1) the superior performance of two MOSC methods over existing SC methods, 2) the effectiveness of the mixing parameter determination strategy, and 3) insights offered by the structure-aware error metrics.
Ensemble clustering has been a popular research topic in data mining and machine learning. Despite its significant progress in recent years, there are still two challenging issues in the current ensemble clustering research. First, most of the existi ng algorithms tend to investigate the ensemble information at the object-level, yet often lack the ability to explore the rich information at higher levels of granularity. Second, they mostly focus on the direct connections (e.g., direct intersection or pair-wise co-occurrence) in the multiple base clusterings, but generally neglect the multi-scale indirect relationship hidden in them. To address these two issues, this paper presents a novel ensemble clustering approach based on fast propagation of cluster-wise similarities via random walks. We first construct a cluster similarity graph with the base clusters treated as graph nodes and the cluster-wise Jaccard coefficient exploited to compute the initial edge weights. Upon the constructed graph, a transition probability matrix is defined, based on which the random walk process is conducted to propagate the graph structural information. Specifically, by investigating the propagating trajectories starting from different nodes, a new cluster-wise similarity matrix can be derived by considering the trajectory relationship. Then, the newly obtained cluster-wise similarity matrix is mapped from the cluster-level to the object-level to achieve an enhanced co-association (ECA) matrix, which is able to simultaneously capture the object-wise co-occurrence relationship as well as the multi-scale cluster-wise relationship in ensembles. Finally, two novel consensus functions are proposed to obtain the consensus clustering result. Extensive experiments on a variety of real-world datasets have demonstrated the effectiveness and efficiency of our approach.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا