ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational waves $times$ HI intensity mapping: cosmological and astrophysical applications

128   0   0.0 ( 0 )
 نشر من قبل Giulio Scelfo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two of the most rapidly growing observables in cosmology and astrophysics are gravitational waves (GW) and the neutral hydrogen (HI) distribution. In this work, we investigate the cross-correlation between resolved gravitational wave detections and HI signal from intensity mapping (IM) experiments. By using a tomographic approach with angular power spectra, including all projection effects, we explore possible applications of the combination of the Einstein Telescope and the SKAO intensity mapping surveys. We focus on three main topics: textit{(i)} statistical inference of the observed redshift distribution of GWs; textit{(ii)} constraints on dynamical dark energy models as an example of cosmological studies; textit{(iii)} determination of the nature of the progenitors of merging binary black holes, distinguishing between primordial and astrophysical origin. Our results show that: textit{(i)} the GW redshift distribution can be calibrated with good accuracy at low redshifts, without any assumptions on cosmology or astrophysics, potentially providing a way to probe astrophysical and cosmological models; textit{(ii)} the constrains on the dynamical dark energy parameters are competitive with IM-only experiments, in a complementary way and potentially with less systematics; textit{(iii)} it will be possible to detect a relatively small abundance of primordial black holes within the gravitational waves from resolved mergers. Our results extend towards $mathrm{GW times IM}$ the promising field of multi-tracing cosmology and astrophysics, which has the major advantage of allowing scientific investigations in ways that would not be possible by looking at single observables separately.



قيم البحث

اقرأ أيضاً

We forecast constraints on neutral hydrogen (HI) and cosmological parameters using near-term intensity mapping surveys with instruments such as BINGO, MeerKAT, and the SKA, and Stage III and IV optical galaxy surveys. If foregrounds and systematic ef fects can be controlled - a problem which becomes much easier in cross-correlation - these surveys will provide exquisite measurements of the HI density and bias, as well as measurements of the growth of structure, the angular diameter distance, and the Hubble rate, over a wide range of redshift. We also investigate the possibility of detecting the late time ISW effect using the Planck satellite and forthcoming intensity mapping surveys, finding that a large sky survey with Phase 1 of the SKA can achieve a near optimal detection.
In the next decades, the gravitational-wave (GW) standard siren observations and the neutral hydrogen 21 cm intensity mapping (IM) surveys, as two promising non-optical cosmological probes, will play an important role in precisely measuring cosmologi cal parameters. In this work, we make a forecast for cosmological parameter estimation with the synergy between the GW standard siren observations and the 21 cm IM surveys. We choose the Einstein Telescope (ET) and the Taiji observatory as the representatives of the GW detection projects and choose the Square Kilometre Array (SKA) phase I mid-frequency array as the representative of the 21 cm IM experiments. We find that the synergy of the GW standard siren observations and the 21 cm IM surveys could break the cosmological parameter degeneracies. The joint ET+Taiji+SKA data give $sigma(H_0)=0.28 {rm km s^{-1} Mpc^{-1}}$ in the $Lambda$CDM model, $sigma(w)=0.028$ in the $w$CDM model, which are better than the results of $Planck$+BAO+SNe, and $sigma(w_0)=0.077$ and $sigma(w_a)=0.295$ in the CPL model, which are comparable with the results of $Planck$+BAO+SNe. In the $Lambda$CDM model, the constraint accuracies of $H_0$ and $Omega_{rm m}$ are less than or rather close to 1%, indicating that the magnificent prospects for non-optical precision cosmology are worth expecting.
We study a model of interacting dark matter and dark energy, in which the two components are coupled. We calculate the predictions for the 21-cm intensity mapping power spectra, and forecast the detectability with future single-dish intensity mapping surveys (BINGO, FAST and SKA-I). Since dark energy is turned on at $zsim 1$, which falls into the sensitivity range of these radio surveys, the HI intensity mapping technique is an efficient tool to constrain the interaction. By comparing with current constraints on dark sector interactions, we find that future radio surveys will produce tight and reliable constraints on the coupling parameters.
General Relativity provides us with an extremely powerful tool to extract at the same time astrophysical and cosmological information from the Stochastic Gravitational Wave Backgrounds (SGWBs): the cross-correlation with other cosmological tracers, s ince their anisotropies share a common origin and the same perturbed geodesics. In this letter we explore the cross-correlation of the cosmological and astrophysical SGWBs with Cosmic Microwave Background (CMB) anisotropies, showing that future GW detectors, such as LISA or BBO, have the ability to measure such cross-correlation signals. We also present, as a new tool in this context, constrained realization maps of the SGWBs extracted from the high-resolution CMB {it Planck} maps. This technique allows, in the low-noise regime, to faithfully reconstruct the expected SGWB map by starting from CMB measurements.
We discuss the detectability of large-scale HI intensity fluctuations using the FAST telescope. We present forecasts for the accuracy of measuring the Baryonic Acoustic Oscillations and constraining the properties of dark energy. The FAST $19$-beam L -band receivers ($1.05$--$1.45$ GHz) can provide constraints on the matter power spectrum and dark energy equation of state parameters ($w_{0},w_{a}$) that are comparable to the BINGO and CHIME experiments. For one year of integration time we find that the optimal survey area is $6000,{rm deg}^2$. However, observing with larger frequency coverage at higher redshift ($0.95$--$1.35$ GHz) improves the projected errorbars on the HI power spectrum by more than $2~sigma$ confidence level. The combined constraints from FAST, CHIME, BINGO and Planck CMB observations can provide reliable, stringent constraints on the dark energy equation of state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا