ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum error as an emergent magnetic field

130   0   0.0 ( 0 )
 نشر من قبل Shaokai Jian
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the effect of quantum errors on a monitored Brownian Sachdev-Ye-Kitaev (SYK) model featuring a measurement-induced phase transition that can be understood as a symmetry-breaking transition of an effective $Z_4$ magnet in the replica space. The errors describe the loss of information about the measurement outcomes and are applied during the non-unitary evolution or at the end of the evolution. In the former case, we find that this error can be mapped to an emergent magnetic field in the $Z_4$ magnet, and as a consequence, the symmetry is explicitly broken independent of the measurement rate. Renyi entropies computed by twisting boundary conditions now generate domain walls even in the would-be symmetric phase at a high measurement rate. The entropy is therefore volume-law irrespective of the measurement rate. In the latter case, the error-induced magnetic field only exists near the boundary of the magnet. Varying the magnetic field leads to a pinning transition of domain walls, corresponding to error threshold of the quantum code prepared by the non-unitary SYK dynamics.



قيم البحث

اقرأ أيضاً

170 - Wen Wei Ho , Soonwon Choi 2021
We present exact results on a novel kind of emergent random matrix universality that quantum many-body systems at infinite temperature can exhibit. Specifically, we consider an ensemble of pure states supported on a small subsystem, generated from pr ojective measurements of the remainder of the system in a local basis. We rigorously show that the ensemble, derived for a class of quantum chaotic systems undergoing quench dynamics, approaches a universal form completely independent of system details: it becomes uniformly distributed in Hilbert space. This goes beyond the standard paradigm of quantum thermalization, which dictates that the subsystem relaxes to an ensemble of quantum states that reproduces the expectation values of local observables in a thermal mixed state. Our results imply more generally that the distribution of quantum states themselves becomes indistinguishable from those of uniformly random ones, i.e. the ensemble forms a quantum state-design in the parlance of quantum information theory. Our work establishes bridges between quantum many-body physics, quantum information and random matrix theory, by showing that pseudo-random states can arise from isolated quantum dynamics, opening up new ways to design applications for quantum state tomography and benchmarking.
Quantum chaos in many-body systems provides a bridge between statistical and quantum physics with strong predictive power. This framework is valuable for analyzing properties of complex quantum systems such as energy spectra and the dynamics of therm alization. While contemporary methods in quantum chaos often rely on random ensembles of quantum states and Hamiltonians, this is not reflective of most real-world systems. In this paper, we introduce a new perspective: across a wide range of examples, a single non-random quantum state is shown to encode universal and highly random quantum state ensembles. We characterize these ensembles using the notion of quantum state $k$-designs from quantum information theory and investigate their universality using a combination of analytic and numerical techniques. In particular, we establish that $k$-designs arise naturally from generic states as well as individual states associated with strongly interacting, time-independent Hamiltonian dynamics. Our results offer a new approach for studying quantum chaos and provide a practical method for sampling approximately uniformly random states; the latter has wide-ranging applications in quantum information science from tomography to benchmarking.
245 - Martin Claassen 2021
We develop a flow renormalization approach for periodically-driven quantum systems, which reveals prethermal dynamical regimes and associated timescales via direct correspondence between real time and flow time behavior. In this formalism, the dynami cal problem is recast in terms of coupling constants of the theory flowing towards an attractive fixed point that represents the thermal Floquet Hamiltonian at long times, while narrowly avoiding a series of unstable fixed points which determine distinct prethermal regimes at intermediate times. We study a class of relevant perturbations that trigger the onset of heating and thermalization, and demonstrate that the renormalization flow has an elegant representation in terms of a flow of matrix product operators. Our results permit microscopic calculations of the emergence of distinct dynamical regimes directly in the thermodynamic limit in an efficient manner, establishing a new computational tool for driven non-equilibrium systems.
496 - Shang-Shu Li , Rui-Zhen Huang , 2021
We study the quantum thermalization and information scrambling dynamics of an experimentally realizable quantum spin model with homogeneous XX-type all-to-all interactions and random local potentials. We identify the thermalization-localization trans ition by changing the disorder strength, under a proper relative all-to-all interaction strength. The operator scrambling has no light-cone behavior and grows almost equally fast in both phases. In the thermal phase, we find that the scrambling dynamics exhibits fast scrambling without appealing to the semi-classical limit. The fast scrambling dynamics always exists at a fixed bare interaction strength regardless of the relative strength in the Hamiltonian. The model also shows faster or slower scrambling dynamics related to the bare interaction strength. We show that the seeming violation of the fast scrambling conjecture arises from the absence of a natural timescale in the infinite temperature ensemble. We suggest that one needs a proper timescale and the corresponding dimensionless time for fast scrambling dynamics. After introducing such a timescale, we give a general phase diagram of the fast scrambling dynamics in the thermal phase. We also briefly discuss the experimental realization of the model using superconducting qubit quantum simulators.
Generic short-range interacting quantum systems with a conserved quantity exhibit universal diffusive transport at late times. We employ non-equilibrium quantum field theory and semi-classical phase-space simulations to show how this universality is replaced by a more general transport process in a long-range XY spin chain at infinite temperature with couplings decaying algebraically with distance as $r^{-alpha}$. While diffusion is recovered for $alpha>1.5$, longer-ranged couplings with $0.5<alphaleq 1.5 $ give rise to effective classical Levy flights; a random walk with step sizes drawn from a distribution with algebraic tails. We find that the space-time dependent spin density profiles are self-similar, with scaling functions given by the stable symmetric distributions. As a consequence, for $0.5<alphaleq1.5$ autocorrelations show hydrodynamic tails decaying in time as $t^{-1/(2alpha-1)}$ and linear-response theory breaks down. Our findings can be readily verified with current trapped ion experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا