ﻻ يوجد ملخص باللغة العربية
It is widely known in quantum mechanics that solutions of the Schr{o}inger equation (SE) for a linear potential are in one-to-one correspondence with the solutions of the free SE. The physical reason for this correspondence is Einsteins principle of equivalence. What is usually not so widely known is that solutions of the Schr{o}dinger equation with harmonic potential can also be mapped to the solutions of the free Schr{o}dinger equation. The physical understanding of this equivalence is not known as precisely as in the case of the equivalence principle. We present a geometric picture that will link both of the above equivalences with one constraint on the Eisenhart metric.
The main purpose of this paper is to demonstrate and illustrate, once again, the potency of the variational technique as an approximation procedure for the quantization of quantum mechanical systems. By choosing particle-in-a-box wavefunctions as tri
The motion of a dynamical system on an $n$-dimensional configuration space may be regarded as the lightlike shadow of null geodsics moving in an $(n+2)$ dimensional spacetime known as its Einsenhart-Duval lift. In this paper it is shown that if the c
We study a pair of canonoid (fouled) Hamiltonians of the harmonic oscillator which provide, at the classical level, the same equation of motion as the conventional Hamiltonian. These Hamiltonians, say $K_{1}$ and $K_{2}$, result to be explicitly time
A cosmological extension of the Eisenhart-Duval metric is constructed by incorporating a cosmic scale factor and the energy-momentum tensor into the scheme. The dynamics of the spacetime is governed the Ermakov-Milne-Pinney equation. Killing isometri
We consider a thermal quantum harmonic oscillator weakly coupled to a heat bath at a different temperature. We analytically study the quantum heat exchange statistics between the two systems using the quantum-optical master equation. We exactly compu