Non-thermal electron energization during the impulsive phase of an X9.3 flare revealed by Insight-HXMT


الملخص بالإنكليزية

The X9.3 flare SOL20170906T11:55 was observed by the CsI detector aboard the first Chinese X-ray observatory Hard X-ray Modulation telescope (Insight-HXMT). By using wavelets method, we report about 22 s quasiperiodic pulsations(QPPs) during the impulsive phase. And the spectra from 100 keV to 800 keV showed the evolution with the gamma-ray flux, of a power-law photon index from $sim 1.8$ before the peak, $sim 2.0$ around the flare peak, to $sim 1.8$ again. The gyrosynchrotron microwave spectral analysis reveals a $36.6 pm 0.6 arcsec$ radius gyrosynchrotron source with mean transverse magnetic field around 608.2 Gauss, and the penetrated $ge$ 10 keV non-thermal electron density is about $10^{6.7} mathrm{cm}^{-3}$ at peak time. The magnetic field strength followed the evolution of high-frequency radio flux. Further gyrosynchrotron source modeling analysis implies that there exists a quite steady gyrosynchrotron source, the non-thermal electron density and transverse magnetic field evolution are similar to higher-frequency light curves. The temporally spectral analysis reveals that those non-thermal electrons are accelerated by repeated magnetic reconnection, likely from a lower corona source.

تحميل البحث