ﻻ يوجد ملخص باللغة العربية
Stripped-envelope supernovae (SE-SNe) show a wide variety of photometric and spectroscopic properties. This is due to the different potential formation channels and the stripping mechanism that allows for a large diversity within the progenitors outer envelop compositions. Here, the photometric and spectroscopic observations of SN 2020cpg covering $sim 130$ days from the explosion date are presented. SN 2020cpg ($z = 0.037$) is a bright SE-SNe with the $B$-band peaking at $M_{B} = -17.75 pm 0.39$ mag and a maximum pseudo-bolometric luminosity of $L_mathrm{max} = 6.03 pm 0.01 times 10^{42} mathrm{ergs^{-1}}$. Spectroscopically, SN 2020cpg displays a weak high and low velocity H$alpha$ feature during the photospheric phase of its evolution, suggesting that it contained a detached hydrogen envelope prior to explosion. From comparisons with spectral models, the mass of hydrogen within the outer envelope was constrained to be $sim 0.1 mathrm{M}_{odot}$. From the pseudo-bolometric light curve of SN 2020cpg a $^{56}$Ni mass of $M_mathrm{Ni} sim 0.27 pm 0.08$ $mathrm{M}_{odot}$ was determined using an Arnett-like model. The ejecta mass and kinetic energy of SN 2020cpg were determined using an alternative method that compares the light curve of SN 2020cpg and several modelled SE-SNe, resulting in an ejecta mass of $M_mathrm{ejc} sim 5.5 pm 2.0$ $mathrm{M}_{odot}$ and a kinetic energy of $E_mathrm{K} sim 9.0 pm 3.0 times 10^{51} mathrm{erg}$. The ejected mass indicates a progenitor mass of $18 - 25 mathrm{M}_{odot}$. The use of the comparative light curve method provides an alternative process to the commonly used Arnett-like model to determine the physical properties of SE-SNe.
We present the photometric and spectroscopic studies of a Type Ib SN 2015ap and a Type Ic SN 2016P. SN 2015ap is one of the bright (M$_{V}$ = $-$18.04 mag) Type Ib while SN 2016P lies at an average value among the Type Ic SNe (M$_{V}$ = $-$17.53 mag)
The supernovae of Type Ibc are rare and the detailed characteristics of these explosions have been studied only for a few events. Unlike Type II SNe, the progenitors of Type Ibc have never been detected in pre-explosion images. So, to understand the
We present radio and X-ray observations of the nearby Type IIb Supernova 2013df in NGC4414 from 10 to 250 days after the explosion. The radio emission showed a peculiar soft-to-hard spectral evolution. We present a model in which inverse Compton cool
We present optical and near-infrared observations of SN 2012au, a slow-evolving supernova (SN) with properties that suggest a link between subsets of energetic and H-poor SNe and superluminous SNe. SN 2012au exhibited conspicuous SN Ib-like He I line
We present a study of optical and near-infrared (NIR) spectra along with the light curves of SN 2013ai. These data range from discovery until 380 days after explosion. SN 2013ai is a fast declining type II supernova (SN II) with an unusually long ris