ﻻ يوجد ملخص باللغة العربية
Budget-management systems are one of the key components of modern auction markets. Internet advertising platforms typically offer advertisers the possibility to pace the rate at which their budget is depleted, through budget-pacing mechanisms. We focus on multiplicative pacing mechanisms in an online setting in which a bidder is repeatedly confronted with a series of advertising opportunities. After collecting bids, each item is then allocated through a single-item, second-price auction. If there were no budgetary constraints, bidding truthfully would be an optimal choice for the advertiser. However, since their budget is limited, the advertiser may want to shade their bid downwards in order to preserve their budget for future opportunities, and to spread expenditures evenly over time. The literature on online pacing problems mostly focuses on the setting in which the bidder optimizes an additive separable objective, such as the total click-through rate or the revenue of the allocation. In many settings, however, bidders may also care about other objectives which oftentimes are non-separable, and therefore not amenable to traditional online learning techniques. Building on recent work, we study the frequent case in which advertisers seek to reach a certain distribution of impressions over a target population of users. We introduce a novel regularizer to achieve this desideratum, and show how to integrate it into an online mirror descent scheme attaining the optimal order of sub-linear regret compared to the optimal allocation in hindsight when inputs are drawn independently, from an unknown distribution. Moreover, we show that our approach can easily be incorporated in standard existing pacing systems that are not usually built for this objective. The effectiveness of our algorithm in internet advertising applications is confirmed by numerical experiments on real-world data.
In e-commerce advertising, it is crucial to jointly consider various performance metrics, e.g., user experience, advertiser utility, and platform revenue. Traditional auction mechanisms, such as GSP and VCG auctions, can be suboptimal due to their fi
A classical trading experiment consists of a set of unit demand buyers and unit supply sellers with identical items. Each agents value or opportunity cost for the item is their private information and preferences are quasi-linear. Trade between agent
The dynamics of financial markets are driven by the interactions between participants, as well as the trading mechanisms and regulatory frameworks that govern these interactions. Decision-makers would rather not ignore the impact of other participant
Econometric inference allows an analyst to back out the values of agents in a mechanism from the rules of the mechanism and bids of the agents. This paper gives an algorithm to solve the problem of inferring the values of agents in a dominant-strateg
We study the limits of an information intermediary in Bayesian auctions. Formally, we consider the standard single-item auction, with a revenue-maximizing seller and $n$ buyers with independent private values; in addition, we now have an intermediary