ترغب بنشر مسار تعليمي؟ اضغط هنا

Inclusive Production of Heavy Quarkonia in pNRQCD

128   0   0.0 ( 0 )
 نشر من قبل Hee Sok Chung
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a formalism for computing inclusive production cross sections of heavy quarkonia based on the nonrelativistic QCD and the potential nonrelativistic QCD effective field theories. Our formalism applies to strongly coupled quarkonia, which include excited charmonium and bottomonium states. Analogously to heavy quarkonium decay processes, we express nonrelativistic QCD long-distance matrix elements in terms of quarkonium wavefunctions at the origin and universal gluonic correlators. Our expressions for the long-distance matrix elements are valid up to corrections of order $1/N_c^2$. These expressions enhance the predictive power of the nonrelativistic effective field theory approach to inclusive production processes by reducing the number of nonperturbative unknowns, and make possible first-principle determinations of long-distance matrix elements once the gluonic correlators are known. Based on this formalism, we compute the production cross sections of $P$-wave charmonia and bottomonia at the LHC, and find good agreement with measurements.



قيم البحث

اقرأ أيضاً

We compute the color-singlet and color-octet nonrelativistic QCD (NRQCD) long-distance matrix elements for inclusive production of $P$-wave quarkonia in the framework of potential NRQCD. In this way, the color-octet NRQCD long-distance matrix element can be determined without relying on measured cross section data, which has not been possible so far. We obtain inclusive cross sections of $chi_{cJ}$ and $chi_{bJ}$ at the LHC, which are in good agreement with data. In principle, the formalism developed in this Letter can be applied to all inclusive production processes of heavy quarkonia.
After an introduction motivating the study of quarkonium production, we review the recent developments in the phenomenology of quarkonium production in inclusive scatterings of hadrons and leptons. We naturally address data and predictions relevant f or the LHC, the Tevatron, RHIC, HERA, LEP, B factories and EIC. An up-to-date discussion of the contributions from feed downs within the charmonium and bottomonium families as well as from b hadrons to charmonia is also provided. This contextualises an exhaustive overview of new observables such as the associated production along with a Standard Model boson (photon, W and Z), with another quarkonium, with another heavy quark as well as with light hadrons or jets. We address the relevance of these reactions in order to improve our understanding of the mechanisms underlying quarkonium production as well as the physics of multi-parton interactions, in particular the double parton scatterings. An outlook towards future studies and facilities concludes this review.
75 - Stephan Narison 2018
Correlations between the QCD coupling alpha_s, the gluon condensate < alpha_s G^2 >, and the c,b-quark running masses m_c,b in the MS-scheme are explicitly studied (for the first time) from the (axial-)vector and (pseudo)scalar charmonium and bottomi um ratios of Laplace sum rules (LSR) evaluated at the mu-subtraction stability point where PT @N2LO, N3LO and < alpha_s G^2> @NLO corrections are included. Our results clarify the (apparent) discrepancies between different estimates of < alpha_s G^2> from J/psi sum rule but also shows the sensitivity of the sum rules on the choice of the mu-subtraction scale which does not permit a high-precision estimate of m_c,b. We obtain from the (axial-)vector [resp. (pseudo)scalar] channels <alpha_s G^2>=(8.5+- 3.0)> [resp. (6.34+-.39)] 10^-2 GeV^4, m_c(m_c)= 1256(30) [resp. 1266(16)] MeV and m_b(m_b)=4192(15) MeV. Combined with our recent determinations from vector channel, one obtains the average: m_c(m_c)= 1263(14) MeV and m_b(m_b) 4184(11) MeV. Adding our value of the gluon condensate with different previous estimates, we obtain the new sum rule average: <alpha_s G^2>=(6.35+- 0.35) 10^-2 GeV^4. The mass-splittings M_chi_0c(0b)-M_eta_c(b) give @N2LO: alpha_s(M_Z)=0.1183(19)(3) in good agreement with the world average (see more detailed discussions in the section: addendum). .
We improve the pNRQCD approach to annihilation processes of heavy quarkonium and make first pNRQCD predictions for exclusive electromagnetic production of heavy quarkonium. We consider strongly coupled quarkonia, i.e., quarkonia that are not Coulombi c bound states. Possible strongly coupled quarkonia include excited charmonium and bottomonium states. For these, pNRQCD provides expressions for the decay and exclusive electromagnetic production NRQCD matrix elements that depend on the wavefunctions at the origin and few universal gluon field correlators. We compute electromagnetic decay widths and exclusive production cross sections, and inclusive decay widths into light hadrons for $P$-wave quarkonia at relative order $v^2$ and leading order, respectively. We also compute the decay widths of $2S$ and $3S$ bottomonium states into lepton pairs and their ratios with the inclusive widths into light hadrons at relative order $v^2$.
The ladder kernel of the Bethe-Salpeter equation is amended by introducing a different flavor dependence of the dressing functions in the heavy-quark sector. Compared with earlier work this allows for the simultaneous calculation of the mass spectrum and leptonic decay constants of light pseudoscalar mesons, the $D_u$, $D_s$, $B_u$, $B_s$ and $B_c$ mesons and the heavy quarkonia $eta_c$ and $eta_b$ within the same framework at a physical pion mass. The corresponding Bethe-Salpeter amplitudes are projected onto the light front and we reconstruct the distribution amplitudes of the mesons in the full theory. A comparison with the first inverse moment of the heavy meson distribution amplitude in heavy quark effective theory is made.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا